数据分析之pandas常见的数据处理(四)

简介: 常见聚合方法方法 说明count 计数describe 给出各列的常用统计量min,max 最大最小值argmin,argmax 最大最小值的索引位置(整数)idx...

常见聚合方法

方法 说明
count 计数
describe 给出各列的常用统计量
min,max 最大最小值
argmin,argmax 最大最小值的索引位置(整数)
idxmin,idxmax 最大最小值的索引值
quantile 计算样本分位数
sum,mean 对列求和,均值
mediam 中位数
mad 根据平均值计算平均绝对离差
var,std 方差,标准差
skew 偏度(三阶矩)
Kurt 峰度(四阶矩)
cumsum 累积和
Cummins,cummax 累计组大致和累计最小值
cumprod 累计积
diff 一阶差分
pct_change 计算百分数变化

1 清洗无效数据

df[df.isnull()]  #判断是够是Nan,None返回的是个true或false的Series对象
df[df.notnull()]

#dropna(): 过滤丢失数据
#df3.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
df.dropna()                 #将所有含有nan项的row删除
df.dropna(axis=1,thresh=3)  #将在列的方向上三个为NaN的项删除
df.dropna(how='ALL')        #将全部项都是nan的row删除

df.dropna()与data[data.notnull()]  #效果一致

#fillna(): 填充丢失数据
#前置填充  axis = 0 行
#后置填充  axis = 1 列
df3.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)
df.fillna({1:0, 2:0.5})         #对第一列nan值赋0,第二列赋值0.5
df.fillna(method='ffill')   #在列方向上以前一个值作为值赋给NaN
AI 代码解读

2 drop函数使用

drop函数的使用:删除行、删除列
print frame.drop(['a'])
print frame.drop(['Ohio'], axis = 1)
AI 代码解读

drop函数默认删除行,列需要加axis = 1

drop函数的使用:inplace参数

采用drop方法,有下面三种等价的表达式:

1. DF= DF.drop('column_name', axis=1);
2. DF.drop('column_name',axis=1, inplace=True)
3. DF.drop([DF.columns[[0,1, 3]]], axis=1, inplace=True)
AI 代码解读

注意:凡是会对原数组作出修改并返回一个新数组的,往往都有一个 inplace可选参数。如果手动设定为True(默认为False),那么原数组直接就被替换。也就是说,采用inplace=True之后,原数组名(如2和3情况所示)对应的内存值直接改变;

而采用inplace=False之后,原数组名对应的内存值并不改变,需要将新的结果赋给一个新的数组或者覆盖原数组的内存位置(如1情况所示)。

drop函数的使用:数据类型转换
df['Name'] = df['Name'].astype(np.datetime64)
AI 代码解读

DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

3 pandas数据处理方法

(1) 删除重复数据

df.duplicated() 返回boolean列表,重复为True

df.drop_duplicates() 删除重复元素即值为True的列行

参数列表

  • subset : column label or sequence of labels, optional
    用来指定特定的列,默认所有列
  • keep : {‘first’, ‘last’, False}, default ‘first’
    删除重复项并保留第一次出现的项
  • inplace : boolean, default False
    是直接在原来数据上修改还是保留一个副本
# 判断是否重复
data.duplicated()`
#移除重复数据
data.drop_duplicated()
#对指定列判断是否存在重复值,然后删除重复数据
data.drop_duplicated(['key1'])

df = DataFrame({'color':['white','white','red','red','white'],
               'value':[2,1,3,3,2]})
display(df,df.duplicated(),df.drop_duplicates())

#输出:
color   value
0   white   2
1   white   1
2   red 3
3   red 3
4   white   2
0    False
1    False
2    False
3     True
4     True
dtype: bool
color   value
0   white   2
1   white   1
2   red     3
AI 代码解读

(2) 映射

1 replace() 替换元素 replace({索引键值对})

df = DataFrame({'item':['ball','mug','pen'],
               'color':['white','rosso','verde'],
               'price':[5.56,4.20,1.30]})
newcolors = {'rosso':'red','verde':'green'}
display(df,df.replace(newcolors))

#输出:
    color   item    price
0   white   ball    5.56
1   rosso   mug 4.20
2   verde   pen 1.30
    color   item    price
0   white   ball    5.56
1   red mug 4.20
2   green   pen 1.30

2.replace还经常用来替换NaN元素

df2 = DataFrame({'math':[100,139,np.nan],'English':[146,None,119]},index = ['张三','李四','Tom'])
newvalues = {np.nan:100}
display(df2,df2.replace(newvalues))

#输出:
    English math
张三  146.0   100.0
李四  NaN 139.0
Tom 119.0   NaN
English math
张三  146.0   100.0
李四  100.0   139.0
Tom 119.0   100.0
AI 代码解读

2 map()函数:新建一列

map(函数,可迭代对象) map(函数/{索引键值对})

map中返回的数据是一个具体值,不能迭代.

df3 = DataFrame({'color':['red','green','blue'],'project':['math','english','chemistry']})
price = {'red':5.56,'green':3.14,'chemistry':2.79}
df3['price'] = df3['color'].map(price)
display(df3)

#输出:
color   project price
0   red     math        5.56
1   green   english     3.14
2   blue    chemistry   NaN


df3 = DataFrame({'zs':[129,130,34],'ls':[136,98,8]},index = ['张三','李四','倩倩'])
display(df3)
display(df3['zs'].map({129:'你好',130:'非常好',34:'不错'}))
display(df3['zs'].map({129:120}))
def mapscore(score):
    if score<90:
        return 'failed'
    elif score>120:
        return 'excellent'
    else:
        return 'pass'
df3['status'] = ddd['zs'].map(mapscore)
df3

输出:
      zs  ls
张三  129 136
李四  130 98
倩倩  34  8

张三     你好
李四    非常好
倩倩     不错
Name: zs, dtype: object

张三    120.0
李四      NaN
倩倩      NaN
Name: zs, dtype: float64
Out[96]:
ls    zs    status
张三  136 129 excellent
李四  98  130 excellent
倩倩  8   34  failed
AI 代码解读

3 rename()函数:替换索引 rename({索引键值对})

df4 = DataFrame({'color':['white','gray','purple','blue','green'],'value':np.random.randint(10,size = 5)})
new_index = {0:'first',1:'two',2:'three',3:'four',4:'five'}
display(df4,df4.rename(new_index))

#输出:
    color   value
0   white   2
1   gray    0
2   purple  9
3   blue    2
4   green   0
color   value
first   white   2
two     gray    0
three   purple  9
four    blue    2
five    green   0
AI 代码解读

(3) 异常值检测与过滤

1 使用describe()函数查看每一列的描述性统计量

df = DataFrame(np.random.randint(10,size = 10))
display(df.describe())      
        0
count   10.000000
mean    5.900000
std 2.685351
min 1.000000
25% 6.000000
50% 7.000000
75% 7.750000
max 8.000000
AI 代码解读

2 使用std()函数可以求得DataFrame对象每一列的标准差

df.std()

#输出:
0    3.306559
dtype: float64
AI 代码解读

3 根据每一列的标准差,对DataFrame元素进行过滤。
借助any()函数,对每一列应用筛选条件,any过滤出所有符合条件的数据

display(df[(df>df.std()*3).any(axis = 1)])
df.drop(df[(np.abs(df) > (3*df.std())).any(axis=1)].index,inplace=True)
display(df,df.shape)

输出:
    0   1
2   7   9
6   8   8
9   8   1
0   1
0   5   0
1   3   3
3   3   5
4   2   4
5   7   6
7   1   6
8   7   7
(7, 2)
AI 代码解读

(4) 排序

使用take()函数排序
可以借助np.random.permutation()函数随机排序

df5 = DataFrame(np.arange(25).reshape(5,5))
new_order = np.random.permutation(5)
display(new_order)
display(df5,df5.take(new_order))

#输出
array([4, 2, 3, 1, 0])
    0   1   2   3   4
0   0   1   2   3   4
1   5   6   7   8   9
2   10  11  12  13  14
3   15  16  17  18  19
4   20  21  22  23  24
    0   1   2   3   4
4   20  21  22  23  24
2   10  11  12  13  14
3   15  16  17  18  19
1   5   6   7   8   9
0   0   1   2   3   4
AI 代码解读

(5) 数据分类分组

groupby()函数

import pandas as pd
df = pd.DataFrame([{'col1':'a', 'col2':1, 'col3':'aa'}, {'col1':'b', 'col2':2, 'col3':'bb'}, {'col1':'c', 'col2':3, 'col3':'cc'}, {'col1':'a', 'col2':44, 'col3':'aa'}])
display(df)
# 按col1分组并按col2求和
display(df.groupby(by='col1').agg({'col2':sum}).reset_index())
# 按col1分组并按col2求最值
display(df.groupby(by='col1').agg({'col2':['max', 'min']}).reset_index())
# 按col1 ,col3分组并按col2求和
display(df.groupby(by=['col1', 'col3']).agg({'col2':sum}).reset_index())
AI 代码解读
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from datetime import datetime
'''
分组groupby
'''
df=pd.DataFrame({'key1':['a','a','b','b','a'],
                 'key2':['one','two','one','two','one'],
                 'data1':np.arange(5),
                 'data2':np.arange(5)})
print(df)
#   key1 key2  data1  data2
# 0    a  one      0      0
# 1    a  two      1      1
# 2    b  one      2      2
# 3    b  two      3      3
# 4    a  one      4      4

'''
根据分组进行计算
'''
#按key1分组,计算data1的平均值
grouped=df['data1'].groupby(df['key1'])
print(grouped.mean())
# a    1.666667
# b    2.500000

#按key1和key2分组,计算data1的平均值
groupedmean=df['data1'].groupby([df['key1'],df['key2']]).mean()
print(groupedmean)
# key1  key2
# a     one     2
#       two     1
# b     one     2
#       two     3

#列变行
print(groupedmean.unstack())
# key2  one  two
# key1
# a       2    1
# b       2    3

df['key1']#获取出来的数据series数据

#groupby分组键可以是series还可以是数组
states=np.array(['Oh','Ca','Ca','Oh','Oh'])
years=np.array([2005,2005,2006,2005,2006])
print(df['data1'].groupby([states,years]).mean())
# Ca  2005    1.0
#     2006    2.0
# Oh  2005    1.5
#     2006    4.0

#直接将列名进行分组,非数据项不在其中,非数据项会自动排除分组
print(df.groupby('key1').mean())
#          data1     data2
# key1
# a     1.666667  1.666667
# b     2.500000  2.500000

#将入key2分组
print(df.groupby(['key1','key2']).mean())
#            data1  data2
# key1 key2
# a    one       2      2
#      two       1      1
# b    one       2      2
#      two       3      3

#size()方法,返回含有分组大小的Series,得到分组的数量
print(df.groupby(['key1','key2']).size())
# key1  key2
# a     one     2
#       two     1
# b     one     1
#       two     1

'''
对分组信息进行迭代
'''

#将a,b进行分组
for name,group in df.groupby('key1'):
    print(name)
    print(group)
# a
#   key1 key2  data1  data2
# 0    a  one      0      0
# 1    a  two      1      1
# 4    a  one      4      4
# b
#   key1 key2  data1  data2
# 2    b  one      2      2
# 3    b  two      3      3

#根据多个建进行分组
for (k1,k2),group in df.groupby(['key1','key2']):
    print(name)
    print(group)
#  key1 key2  data1  data2
# 0    a  one      0      0
# 4    a  one      4      4
# b
#   key1 key2  data1  data2
# 1    a  two      1      1
# b
#   key1 key2  data1  data2
# 2    b  one      2      2
# b
#   key1 key2  data1  data2
# 3    b  two      3      3


'''
选取一个或一组列,返回的Series的分组对象
'''
#对于groupBy对象,如果用一个或一组列名进行索引。就会聚合
print(df.groupby(df['key1'])['data1'])#根据key1分组,生成data1的数据


print(df.groupby(['key1'])[['data1','data2']].mean())#根据key1分组,生成data1,data2的数据
#        data1     data2
# key1
# a     1.666667  1.666667
# b     2.500000  2.500000

print(df.groupby(['key1','key2'])['data1'].mean())
# key1  key2
# a     one     2
#       two     1
# b     one     2
#       two     3


'''
通过函数进行分组
'''
#加入你能根据人名长度进行分组的话,就直接传入len函数

print(people.groupby(len,axis=1).sum())#杭州3是三个字母
#       2     3
# a  30.0  20.0
# b  23.0  21.0
# c  26.0  22.0
# d  42.0  23.0
# e  46.0  24.0

#还可以和数组、字典、列表、Series混合使用
key_list=['one','one','one','two','two']
print(people.groupby([len,key_list],axis=1).min())
#     2           3
#    one   two   two
# a  0.0  15.0  20.0
# b  1.0  16.0  21.0
# c  2.0  17.0  22.0
# d  3.0  18.0  23.0
# e  4.0  19.0  24.0

'''
根据索引级别分组
'''
columns=pd.MultiIndex.from_arrays([['US',"US",'US','JP','JP'],[1,3,5,1,3]],names=['cty','tenor'])
hier_df=pd.DataFrame(np.random.randn(4,5),columns=columns)
print(hier_df)
# cty          US                            JP
# tenor         1         3         5         1         3
# 0     -1.507729  2.112678  0.841736 -0.158109 -0.645219
# 1      0.355262  0.765209 -0.287648  1.134998 -0.440188
# 2      1.049813  0.763482 -0.362013 -0.428725 -0.355601
# 3     -0.868420 -1.213398 -0.386798  0.137273  0.678293

#根据级别分组
print(hier_df.groupby(level='cty',axis=1).count())
# cty  JP  US
# 0     2   3
# 1     2   3
# 2     2   3
# 3     2   3
AI 代码解读

(6) 高级数据聚合

1 可以使用pd.merge()函数包聚合操作的计算结果添加到df的每一行

d1={'item':['luobo','baicai','lajiao','donggua','luobo','baicai','lajiao','donggua'],
   'color':['white','white','red','green','white','white','red','green'],
   'weight':np.random.randint(10,size = 8),
   'price':np.random.randint(10,size = 8)}
df = DataFrame(d1)
sums = df.groupby('color').sum().add_prefix('total_')

items = df.groupby('item')['price','weight'].sum()

means = items['price']/items['weight']

means = DataFrame(means,columns=['means_price'])

df2 = pd.merge(df,sums,left_on = 'color',right_index = True)

df3 = pd.merge(df2,means,left_on = 'item',right_index = True)
display(df2,df3)


#输出:
color   item    price   weight
0   white   luobo   9   2
1   white   baicai  5   9
2   red lajiao  5   8
3   green   donggua 1   1
4   white   luobo   7   4
5   white   baicai  8   0
6   red lajiao  6   8
7   green   donggua 4   3
total_price total_weight
color       
green   5   4
red 11  16
white   29  15
pandas.core.frame.DataFrame
pandas.core.frame.DataFrame
Out[141]:
        color   item    price   weight  total_price total_weight
0       white   luobo   9       2           29          15
1       white   baicai  5       9           29          15
4       white   luobo   7       4           29          15
5       white   baicai  8       0           29          15
2       red     lajiao  5       8           11          16
6       red     lajiao  6       8           11          16
3       green   donggua 1       1           5           4
7       green   donggua 4       3           5           4
AI 代码解读

2 可以使用transform和apply实现相同功能

使用transform

d1={'item':['luobo','baicai','lajiao','donggua','luobo','baicai','lajiao','donggua'],
   'color':['white','white','red','green','white','white','red','green'],
   'weight':np.random.randint(10,size = 8),
   'price':np.random.randint(10,size = 8)}
df = DataFrame(d1)
sum1 = df.groupby('color')['price','weight'].sum().add_prefix("total_")
sums2 = df.groupby('color')['price','weight'].transform(lambda x:x.sum()).add_prefix('total_')
sums3 = df.groupby('color')['price','weight'].transform(sum).add_prefix('total_')
display(sum,df,sum1,sums2,sums3)

输出:
<function sum>
color   item    price   weight
0   white   luobo   7   7
1   white   baicai  7   7
2   red lajiao  2   7
3   green   donggua 6   6
4   white   luobo   1   2
5   white   baicai  3   6
6   red lajiao  7   0
7   green   donggua 0   2
total_price total_weight
color       
green   6   8
red 9   7
white   18  22
total_price total_weight
0   18  22
1   18  22
2   9   7
3   6   8
4   18  22
5   18  22
6   9   7
7   6   8
total_price total_weight
0   18  22
1   18  22
2   9   7
3   6   8
4   18  22
5   18  22
6   9   7
7   6   8
AI 代码解读

使用apply

def sum_price(x):
    return x.sum()
sums3 = df.groupby('color')['price','weight'].apply(lambda x:x.sum()).add_prefix('total_')
sums4 = df.groupby('color')['price','weight'].apply(sum_price).add_prefix('total_')
display(df,sums3,sums4)

输出:
color   item    price   weight
0   white   luobo   4   4
1   white   baicai  0   3
2   red lajiao  0   4
3   green   donggua 7   5
4   white   luobo   3   1
5   white   baicai  3   3
6   red lajiao  0   6
7   green   donggua 0   7
total_price total_weight
color       
green   7   12
red 0   10
white   10  11
totals_price    totals_weight
color       
green   7   12
red 0   10
white   10  11
AI 代码解读
目录
打赏
0
0
0
0
2
分享
相关文章
Pandas高级数据处理:数据仪表板制作
在数据分析中,面对庞大、多维度的数据集(如销售记录、用户行为日志),直接查看原始数据难以快速抓住重点。传统展示方式(如Excel表格)缺乏交互性和动态性,影响决策效率。为此,我们利用Python的Pandas库构建数据仪表板,具备数据聚合筛选、可视化图表生成和性能优化功能,帮助业务人员直观分析不同品类商品销量分布、省份销售额排名及日均订单量变化趋势,提升数据洞察力与决策效率。
35 12
Pandas高级数据处理:数据报告生成
Pandas 是数据分析领域不可或缺的工具,支持多种文件格式的数据读取与写入、数据清洗、筛选与过滤。本文从基础到高级,介绍如何使用 Pandas 进行数据处理,并解决常见问题和报错,如数据类型不一致、时间格式解析错误、内存不足等。最后,通过数据汇总、可视化和报告导出,生成专业的数据报告,帮助你在实际工作中更加高效地处理数据。
24 8
Pandas高级数据处理:交互式数据探索
Pandas是Python中流行的数据分析库,提供丰富的数据结构和函数,简化数据操作。本文从基础到高级介绍Pandas的使用,涵盖安装、读取CSV/Excel文件、数据查看与清洗、类型转换、条件筛选、分组聚合及可视化等内容。掌握这些技能,能高效进行交互式数据探索和预处理。
21 6
Pandas高级数据处理:数据可视化进阶
Pandas是数据分析的强大工具,能高效处理数据并与Matplotlib、Seaborn等库集成,实现数据可视化。本文介绍Pandas在绘制基础图表(如折线图)和进阶图表(如分组柱状图、热力图)时的常见问题及解决方案,涵盖数据准备、报错处理、图表优化等内容,并通过代码案例详细解释,帮助读者掌握数据可视化的技巧。
40 13
Pandas高级数据处理:数据安全与隐私保护
在数字化时代,数据安全与隐私保护至关重要。本文介绍使用Pandas进行数据分析时常见的安全问题及解决方案,包括数据泄露风险、权限报错、数据类型转换错误等,并结合代码案例详细讲解如何避免和解决这些问题。同时,探讨高级策略如访问控制、匿名化、差分隐私及加密传输存储,确保数据分析合法合规。
35 7
Pandas高级数据处理:数据加密与解密
在数字化时代,数据安全至关重要。Pandas作为Python的强大数据分析库,结合`cryptography`等加密库,可实现数据的高效加密与解密。本文介绍如何使用Pandas进行数据加密,涵盖对称加密、非对称加密及哈希算法,并提供常见问题及解决方案,确保敏感信息的安全性。通过示例代码演示加密流程,帮助读者掌握数据加密技术,提升数据安全性。
29 1
Pandas高级数据处理:数据压缩与解压
Pandas是数据分析的强大工具,尤其在处理大文件时,数据压缩技术至关重要。本文介绍如何使用Pandas进行数据压缩与解压,包括常见的gzip、bz2等格式。通过压缩技术,可以显著节省存储空间、加快传输速度并提高读写性能。文章还总结了常见问题及解决方案,如文件路径错误、不支持的压缩格式、内存不足和编码问题,帮助用户更高效地管理海量数据。
48 12
Pandas高级数据处理:数据流式计算
在大数据时代,Pandas作为Python强大的数据分析库,在处理结构化数据方面表现出色。然而,面对海量数据时,如何实现高效的流式计算成为关键。本文探讨了Pandas在流式计算中的常见问题与挑战,如内存限制、性能瓶颈和数据一致性,并提供了详细的解决方案,包括使用`chunksize`分批读取、向量化操作及`dask`库等方法,帮助读者更好地应对大规模数据处理需求。
52 17
Pandas高级数据处理:实时数据处理
本文介绍了Pandas在实时数据处理中的应用,涵盖基础概念、常见问题及解决方案。Pandas是Python中强大的数据分析库,支持流式读取和增量更新数据,适用于大规模数据集的处理。通过分块读取、数据类型优化等方法,可有效解决内存不足等问题。文中还提供了代码示例,帮助读者更好地理解和掌握Pandas在实时数据处理中的使用技巧。
58 15
Pandas高级数据处理:数据仪表板制作
《Pandas高级数据处理:数据仪表板制作》涵盖数据清洗、聚合、时间序列处理等技巧,解决常见错误如KeyError和内存溢出。通过多源数据整合、动态数据透视及可视化准备,结合性能优化与最佳实践,助你构建响应快速、数据精准的商业级数据仪表板。适合希望提升数据分析能力的开发者。
72 31

热门文章

最新文章