10分钟大数据Hadoop基础入门

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 前言 目前人工智能和大数据火热,使用的场景也越来越广,日常开发中前端同学也逐渐接触了更多与大数据相关的开发需求。因此对大数据知识也有必要进行一些学习理解 基础概念

前言

目前人工智能和大数据火热,使用的场景也越来越广,日常开发中前端同学也逐渐接触了更多与大数据相关的开发需求。因此对大数据知识也有必要进行一些学习理解。

基础概念

大数据的本质

一、数据的存储:分布式文件系统(分布式存储)
二、数据的计算:分部署计算

基础知识

学习大数据需要具备Java知识基础及Linux知识基础

学习路线

(1)Java基础和Linux基础
(2)Hadoop的学习:体系结构、原理、编程
第一阶段:HDFS、MapReduce、HBase(NoSQL数据库)
第二阶段:数据分析引擎 -> Hive、Pig

数据采集引擎 -> Sqoop、Flume
第三阶段:HUE:Web管理工具

ZooKeeper:实现Hadoop的HA
Oozie:工作流引擎
(3)Spark的学习

第一阶段:Scala编程语言
第二阶段:Spark Core -> 基于内存、数据的计算
第三阶段:Spark SQL -> 类似于mysql 的sql语句
第四阶段:Spark Streaming ->进行流式计算:比如:自来水厂

(4)Apache Storm 类似:Spark Streaming ->进行流式计算

NoSQL:Redis基于内存的数据库

HDFS

分布式文件系统 解决以下问题:

1、硬盘不够大:多几块硬盘,理论上可以无限大
2、数据不够安全:冗余度,hdfs默认冗余为3 ,用水平复制提高效率,传输按照数据库为单位:Hadoop1.x 64M,Hadoop2.x 128M
管理员:NameNode 硬盘:DataNode

image.png
MapReduce

基础编程模型:把一个大任务拆分成小任务,再进行汇总
MR任务:Job = Map + Reduce
Map的输出是Reduce的输入、MR的输入和输出都是在HDFS
MapReduce数据流程分析:

Map的输出是Reduce的输入,Reduce的输入是Map的集合

image

HBase

什么是BigTable?: 把所有的数据保存到一张表中,采用冗余 ---> 好处:提高效率

1、因为有了bigtable的思想:NoSQL:HBase数据库
2、HBase基于Hadoop的HDFS的
3、描述HBase的表结构
核心思想是:利用空间换效率

image

Hadoop环境搭建

环境准备

Linux环境、JDK、http://mirrors.shu.edu.cn/apache/hadoop/common/hadoop-3.0.0/hadoop-3.0.0-src.tar.gz

安装

1、安装jdk、并配置环境变量

vim /etc/profile 末尾添加
image.png
2、解压hadoop-3.0.0.tar.gz、并配置环境变量

tar -zxvf hadoop-3.0.0.tar.gz -C /usr/local/
mv hadoop-3.0.0/ hadoop

image

image

vim /etc/profile 末尾添加

image.png

配置

Hadoop有三种安装模式:

本地模式:

   1台主机  
   不具备HDFS,只能测试MapReduce程序

伪分布模式:

   1台主机  
   具备Hadoop的所有功能,在单机上模拟一个分布式的环境
  (1)HDFS:主:NameNode,数据节点:DataNode
  (2)Yarn:容器,运行MapReduce程序
   主节点:ResourceManager
   从节点:NodeManager

全分布模式:

   至少3台

我们以伪分布模式为例配置:

修改hdfs-site.xml:冗余度1、权限检查false

<!--配置冗余度为1--><property>
    <name>dfs.replication</name>
    <value>1</value></property><!--配置权限检查为false--><property>
    <name>dfs.permissions</name>
    <value>false</value></property>

修改core-site.xml

<name>fs.defaultFS</name>
    <value>hdfs://192.168.56.102:9000</value></property><!--配置DataNode保存数据的位置--><property>
    <name>hadoop.tmp.dir</name>
    <value>/usr/local/hadoop/tmp</value></property>
修改mapred-site.xml

<name>mapreduce.framework.name</name>
 <value>yar</value></property><property>
 <name>yarn.app.mapreduce.am.env</name>
 <value>HADOOP_MAPRED_HOME=/usr/local/hadoop</value></property><property>
 <name>mapreduce.map.env</name>
 <value>HADOOP_MAPRED_HOME=/usr/local/hadoop</value></property><property>
 <name>mapreduce.reduce.env</name>
 <value>HADOOP_MAPRED_HOME=/usr/local/hadoop</value></property><property>
 <name>mapreduce.application.classpath</name>
 <value>
         /usr/local/hadoop/etc/hadoop,
         /usr/local/hadoop/share/hadoop/common/*,
         /usr/local/hadoop/share/hadoop/common/lib/*,
         /usr/local/hadoop/share/hadoop/hdfs/*,
         /usr/local/hadoop/share/hadoop/hdfs/lib/*,
         /usr/local/hadoop/share/hadoop/mapreduce/*,
         /usr/local/hadoop/share/hadoop/mapreduce/lib/*,
         /usr/local/hadoop/share/hadoop/yarn/*,
         /usr/local/hadoop/share/hadoop/yarn/lib/*,    
 </value>
 </property>

修改yarn-site.xml

<!--配置ResourceManager地址--><property>
    <name>yarn.resourcemanager.hostname</name>
    <value>192.168.56.102</value></property><!--配置NodeManager执行任务的方式--><property>
    <name>yarn.nodemanager.aux-service</name>
    <value>mapreduce_shuffle</value></property>

格式化NameNode

hdfs namenode -format

看到

common.Storage: Storage directory /usr/local/hadoop/tmp/dfs/name has been successfully formatted

表示格式化成功

启动

start-all.sh
(*)HDFS:存储数据
(*)YARN:

访问

(*)命令行
(*)Java Api
(*)WEB Console
HDFS: http://192.168.56.102:50070
Yarn: http://192.168.56.102:8088

image

查看HDFS管理界面和yarn资源管理系统
image


image

基本操作:

HDFS相关命令

-mkdir 在HDFD创建目录 hdfs dfs -mkdir /data
-ls 查看目录 hdfs dfs -ls
-ls -R 查看目录与子目录 hdfs dfs -ls -R
-put 上传一个文件 hdfs dfs -put data.txt /data/input
-copyFromLocal 上传一个文件 与-put一样
-moveFromLocal 上传一个文件并删除本地文件
-copyToLocal 下载文件 hdfs dfs -copyTolocal /data/input/data.txt
-put 下载文件 hdfs dfs -put/data/input/data.txt
-rm 删除文件 hdfs dfs -rm
-getmerge 将目录所有文件先合并再下载
-cp 拷贝
-mv 移动
-count 统计目录下的文件个数
-text、-cat 查看文件
-balancer 平衡操作

image

MapReduce示例

image

结果:

image

如上 一个最简单的MapReduce示例就执行成功了

思考

Hadoop是基于Java语言的,前端日常开发是用的PHP,在使用、查找错误时还是蛮吃力的。工作之余还是需要多补充点其它语言的相关知识,编程语言是我们开发、学习的工具,而不应成为限制我们技术成长的瓶颈!

原文发布时间为:2018-07-13
本文来自云栖社区合作伙伴“中生代技术”,了解相关信息可以关注“中生代技术”。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
3天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
28 4
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
113 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
76 1
|
2月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
74 1
|
2月前
|
SQL 分布式计算 大数据
大数据平台的毕业设计01:Hadoop与离线分析
大数据平台的毕业设计01:Hadoop与离线分析
159 0
|
机器学习/深度学习 分布式计算 大数据
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
186 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
79 2
|
2月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
86 5
|
2月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
37 4