利用TICK搭建Docker容器可视化监控中心

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介:

Profile


概述

性能监控是容器服务必不可少的基础设施,容器化应用运行于宿主机上,我们需要知道该容器的运行情况,包括 CPU使用率、内存占用、网络状况以及磁盘空间等等一系列信息。在我的前文《Docker容器可视化监控中心搭建》之中我们就实践过Docker容器的可视化监控,在那篇文章中我们是使用了 cAdvisor + influxdb + grafana 技术栈来完成的。然而容器化世界里向来不会只有一种方法来实现某项功能,可以说有一百条大路来通到罗马,因此本文再来探讨另一种称为 TICK 的技术栈方案来实现Docker容器的性能监控。

基于TICK技术栈实现的Docker容器可视化监控方案架构图如下所示:

TICK方案架构

  • Telegraf:采用插件机制实现的数据采集服务,可以采集包含Docker容器在内的多种性能数据
  • InfluxDB:专门负责存储时序数据
  • Chronograf:基于React.js编写的性能数据可视化服务
  • Kapacitor:提供告警触发和处理功能

这四个组件组成了性能监控的数据管道:Telegraf负责采集节点上的性能数据,然后放入InfluxDB数据库进行存储,Kapacitor通过监听InfluxDB的性能数据来对异常指标发出告警,而Chronograf用来展示集群实时的各项性能指标和状态,提供一个可视化的界面。

下面开始实践的过程!



部署InfluxDB服务

首先准备好 InfluxDB 配置文件:influxdb.conf

mkdir /etc/influxdb
cd /etc/influxdb
touch influxdb.conf
[meta]
  dir = "/var/lib/influxdb/meta"
[data]
  dir = "/var/lib/influxdb/data"
  wal-dir = "/var/lib/influxdb/wal"

然后利用Docker来启动InfluxDB服务:

docker run -d \
--name influxdb \
-p 8086:8086 \
-v /etc/influxdb/influxdb.conf:/etc/influxdb/influxdb.conf \
-v /var/lib/influxdb:/var/lib/influxdb \
docker.io/influxdb


部署Telegraf服务

Telegraf服务需要部署在需要采集数据的节点上。我们首先来准备Telegraf服务的配置文件telegraf.conf

[agent]
  interval = "10s"
  round_interval = true
  metric_batch_size = 1000
  metric_buffer_limit = 10000
  collection_jitter = "0s"
  flush_interval = "10s"
  flush_jitter = "0s"
  debug = false
  quiet = false
  hostname = "www.codesheep.cn"
  omit_hostname = false

[[outputs.influxdb]]
  urls = ["http://192.168.31.177:8086"]
  database = "telegraf"
  username = ""
  password = ""
  write_consistency = "any"
  timeout = "5s"

[[inputs.docker]]
  endpoint = "unix:///var/run/docker.sock"
  container_names = []
  timeout = "5s"
  perdevice = true
  total = false

[[inputs.cpu]]
[[inputs.system]]

该配置文件比较简化,inputs插件是负责数据采集,可以看出来上面的配置说明了我们想采集节点的CPU、System以及Docker容器的各项性能数据;而outputs插件指明了我们将采集到的性能数据放入InfluxDB数据库进行存储。

然后同样利用Docker来启动Telegraf服务

docker run -d \
--name telegraf \
--network host \
-v /etc/telegraf/telegraf.conf:/etc/telegraf/telegraf.conf \
docker.io/telegraf


Chronograf部署

docker run -d \
--name chronograf \
-p 8888:8888 \
-v /var/lib/chronograf:/var/lib/chronograf \
docker.io/chronograf \
--influxdb-url=http://192.168.31.177:8086

注意从上面的指令我们可以看出,Chronograf服务是需要连接到InfluxDB服务中去的,服务启动以后利用浏览器访问8888端口可以打开Chronograf的可视化监控界面



Kapacitor部署

docker run -d \
--name kapacitor \
-p 9092:9092 \
-v /var/lib/kapacitor:/var/lib/kapacitor \
docker.io/kapacitor

好了,至此 TICK 组件已经部署完成,我们可以查看一下宿主机上的容器情况,发现服务都已经启动起来了:

容器运行情况



实际试验

浏览器打开:localhost:8888来访问 Chronograf 提供的可视化界面,后续所有的操作都基于该界面。

  • 点击 Chronograf 主界面左侧菜单的 Host List,可以看到被监控的节点信息:

被监控的节点信息

然后我们点击节点名进入后,就可以查看从该节点上采集到的各项主要指标数据的图表:

查看节点的各项性能数据

除此之外,我们还可以点击节点上的 Apps 具体监控小类,如 docker类别,这样可以得到仅仅与docker相关的性能数据展示:

查看docker小类的性能指标数据

docker小类的性能指标数据展示

  • 然后我们点击 Chronograf 主界面左侧菜单的 Data Explorer,可以看到从InfluxDB那里获得的数据表,以及存储于InfluxDB数据表中的各项具体指标

Data Explorer

  • 最后我们来看一下如何利用Kapacitor来实现告警功能。

点击 Chronograf 主界面左侧菜单的 Alert,可以自定义创建告警规则:

自定义创建告警规则

这里给出一个规则配置示例:我们可以监控某个具体性能指标的变化,如配置一个告警规则等:

规则配置示例



后记

作者更多的SpringBt实践文章在此:


如果有兴趣,也可以抽点时间看看作者一些关于容器化、微服务化方面的文章:



目录
相关文章
|
11天前
|
Prometheus 监控 Cloud Native
如何监控Docker Swarm集群的性能?
如何监控Docker Swarm集群的性能?
48 8
|
2月前
|
运维 监控 数据可视化
Docker容器可视化管理工具 - WGCLOUD基础介绍
WGCLOUD是新一代运维监测平台,它可以监控Docker容器的各种性能数据,比如内存,cpu,Image,运行时间,运行状态,端口映射等信息
|
3月前
|
Prometheus 监控 Cloud Native
docker安装prometheus+Granfan并监控容器
【9月更文挑战第14天】本文介绍了在Docker中安装Prometheus与Grafana并监控容器的步骤,包括创建配置文件、运行Prometheus与Grafana容器,以及在Grafana中配置数据源和创建监控仪表盘,展示了如何通过Prometheus抓取数据并利用Grafana展示容器的CPU使用率等关键指标。
113 1
|
4月前
|
数据可视化 应用服务中间件 nginx
使用Docker搭建网站流量可视化统计系统
使用Docker搭建网站流量可视化统计系统
|
4月前
|
运维 监控 数据可视化
"揭秘Docker管理神器Portainer:一键解锁Docker可视化管理新境界,让你的运维工作轻松又高效!"
【8月更文挑战第11天】Docker简化了应用部署与管理,但容器规模增大时,高效管理变得挑战重重。Portainer作为轻量级Docker管理工具,以直观界面和全面功能脱颖而出。它不仅简化了容器的创建、监控与操作,还涵盖了镜像、网络、卷管理及用户权限控制。Portainer易于部署,兼容单机与Swarm集群,降低学习门槛。本文深度剖析Portainer优势,并通过实例展示其实用性,使读者对其功能与价值有深刻理解。
108 3
|
4月前
|
存储 监控 API
如何监控 Docker 的状态
【8月更文挑战第24天】
178 0
|
4月前
|
NoSQL 数据可视化 Linux
一文教会你如何在Linux系统中使用Docker安装Redis 、以及如何使用可视化工具连接【详细过程+图解】
这篇文章详细介绍了如何在Linux系统中使用Docker安装Redis,并提供了使用可视化工具连接Redis的步骤。内容包括安装Redis镜像、创建外部配置文件、映射文件和端口、启动和测试Redis实例、配置数据持久化存储,以及使用可视化工具连接和操作Redis数据库的过程。
|
5月前
|
Kubernetes Cloud Native 持续交付
云原生架构的核心组成部分通常包括容器化(如Docker)、容器编排(如Kubernetes)、微服务架构、服务网格、持续集成/持续部署(CI/CD)、自动化运维(如Prometheus监控和Grafana可视化)等。
云原生架构的核心组成部分通常包括容器化(如Docker)、容器编排(如Kubernetes)、微服务架构、服务网格、持续集成/持续部署(CI/CD)、自动化运维(如Prometheus监控和Grafana可视化)等。
|
4月前
|
数据可视化 数据安全/隐私保护 开发者
堪称最优秀的Docker可视化管理工具——Portainer深度解析与应用实践
【8月更文挑战第7天】在容器化技术日益盛行的今天,Docker以其轻量级、可移植性和灵活性的优势,成为了开发者和管理员的首选。然而,随着Docker容器的增多,如何高效地管理和监控这些容器成为了一个挑战。Portainer,作为一款开源的Docker可视化管理工具,凭借其直观的操作界面和强大的功能,赢得了广泛的赞誉。今天,我们就来深入探讨Portainer的使用技巧,看看你是否真的会用它。
181 0
|
6月前
|
Prometheus 监控 Cloud Native
容器化技术的性能调优与监控
【6月更文挑战第29天】本文探讨了容器(如Docker)的性能优化与监控,强调了其在云和微服务中的重要性。调优涉及资源限制设定、代码优化,通过性能测试、瓶颈分析进行迭代优化。监控目标是确保稳定性和可用性,使用工具如Portainer、CAdvisor、Prometheus来跟踪状态、性能指标和日志。监控内容涵盖容器状态、资源使用、日志和限制,策略包括设定阈值和告警机制。调优监控的优化有助于提升应用性能和企业价值。