开发者社区> codesheep> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

利用TICK搭建Docker容器可视化监控中心

简介:
+关注继续查看

Profile


概述

性能监控是容器服务必不可少的基础设施,容器化应用运行于宿主机上,我们需要知道该容器的运行情况,包括 CPU使用率、内存占用、网络状况以及磁盘空间等等一系列信息。在我的前文《Docker容器可视化监控中心搭建》之中我们就实践过Docker容器的可视化监控,在那篇文章中我们是使用了 cAdvisor + influxdb + grafana 技术栈来完成的。然而容器化世界里向来不会只有一种方法来实现某项功能,可以说有一百条大路来通到罗马,因此本文再来探讨另一种称为 TICK 的技术栈方案来实现Docker容器的性能监控。

基于TICK技术栈实现的Docker容器可视化监控方案架构图如下所示:

TICK方案架构

  • Telegraf:采用插件机制实现的数据采集服务,可以采集包含Docker容器在内的多种性能数据
  • InfluxDB:专门负责存储时序数据
  • Chronograf:基于React.js编写的性能数据可视化服务
  • Kapacitor:提供告警触发和处理功能

这四个组件组成了性能监控的数据管道:Telegraf负责采集节点上的性能数据,然后放入InfluxDB数据库进行存储,Kapacitor通过监听InfluxDB的性能数据来对异常指标发出告警,而Chronograf用来展示集群实时的各项性能指标和状态,提供一个可视化的界面。

下面开始实践的过程!



部署InfluxDB服务

首先准备好 InfluxDB 配置文件:influxdb.conf

mkdir /etc/influxdb
cd /etc/influxdb
touch influxdb.conf
[meta]
  dir = "/var/lib/influxdb/meta"
[data]
  dir = "/var/lib/influxdb/data"
  wal-dir = "/var/lib/influxdb/wal"

然后利用Docker来启动InfluxDB服务:

docker run -d \
--name influxdb \
-p 8086:8086 \
-v /etc/influxdb/influxdb.conf:/etc/influxdb/influxdb.conf \
-v /var/lib/influxdb:/var/lib/influxdb \
docker.io/influxdb


部署Telegraf服务

Telegraf服务需要部署在需要采集数据的节点上。我们首先来准备Telegraf服务的配置文件telegraf.conf

[agent]
  interval = "10s"
  round_interval = true
  metric_batch_size = 1000
  metric_buffer_limit = 10000
  collection_jitter = "0s"
  flush_interval = "10s"
  flush_jitter = "0s"
  debug = false
  quiet = false
  hostname = "www.codesheep.cn"
  omit_hostname = false

[[outputs.influxdb]]
  urls = ["http://192.168.31.177:8086"]
  database = "telegraf"
  username = ""
  password = ""
  write_consistency = "any"
  timeout = "5s"

[[inputs.docker]]
  endpoint = "unix:///var/run/docker.sock"
  container_names = []
  timeout = "5s"
  perdevice = true
  total = false

[[inputs.cpu]]
[[inputs.system]]

该配置文件比较简化,inputs插件是负责数据采集,可以看出来上面的配置说明了我们想采集节点的CPU、System以及Docker容器的各项性能数据;而outputs插件指明了我们将采集到的性能数据放入InfluxDB数据库进行存储。

然后同样利用Docker来启动Telegraf服务

docker run -d \
--name telegraf \
--network host \
-v /etc/telegraf/telegraf.conf:/etc/telegraf/telegraf.conf \
docker.io/telegraf


Chronograf部署

docker run -d \
--name chronograf \
-p 8888:8888 \
-v /var/lib/chronograf:/var/lib/chronograf \
docker.io/chronograf \
--influxdb-url=http://192.168.31.177:8086

注意从上面的指令我们可以看出,Chronograf服务是需要连接到InfluxDB服务中去的,服务启动以后利用浏览器访问8888端口可以打开Chronograf的可视化监控界面



Kapacitor部署

docker run -d \
--name kapacitor \
-p 9092:9092 \
-v /var/lib/kapacitor:/var/lib/kapacitor \
docker.io/kapacitor

好了,至此 TICK 组件已经部署完成,我们可以查看一下宿主机上的容器情况,发现服务都已经启动起来了:

容器运行情况



实际试验

浏览器打开:localhost:8888来访问 Chronograf 提供的可视化界面,后续所有的操作都基于该界面。

  • 点击 Chronograf 主界面左侧菜单的 Host List,可以看到被监控的节点信息:

被监控的节点信息

然后我们点击节点名进入后,就可以查看从该节点上采集到的各项主要指标数据的图表:

查看节点的各项性能数据

除此之外,我们还可以点击节点上的 Apps 具体监控小类,如 docker类别,这样可以得到仅仅与docker相关的性能数据展示:

查看docker小类的性能指标数据

docker小类的性能指标数据展示

  • 然后我们点击 Chronograf 主界面左侧菜单的 Data Explorer,可以看到从InfluxDB那里获得的数据表,以及存储于InfluxDB数据表中的各项具体指标

Data Explorer

  • 最后我们来看一下如何利用Kapacitor来实现告警功能。

点击 Chronograf 主界面左侧菜单的 Alert,可以自定义创建告警规则:

自定义创建告警规则

这里给出一个规则配置示例:我们可以监控某个具体性能指标的变化,如配置一个告警规则等:

规则配置示例



后记

作者更多的SpringBt实践文章在此:


如果有兴趣,也可以抽点时间看看作者一些关于容器化、微服务化方面的文章:



版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
云服务器使用docker安装portainer容器可视化管理工具
Portainer 将管理容器的复杂性隐藏在易于使用的 UI 后面,使部署应用程序和解决问题变得如此简单,通过使用界面化来完成容器的部署操作。
0 0
DOCKER02_镜像如何存储、镜像加载原理、容器数据卷、可视化界面-Portainer(二)
③. 容器如何挂载 volume、bindmount、temfsmount ①. 每一个容器里面的内容,支持三种挂载方式 ②. 直接挂载 volume(卷) ③. 手动挂载 bind mount ④. 使用总结
0 0
可视化管理Docker容器(portainer)
可视化管理Docker容器(portainer)
0 0
可视化管理Docker容器(ui-for-docker)
可视化管理Docker容器(ui-for-docker)
0 0
Docker容器可视化监控中心搭建
概述 一个宿主机上可以运行多个容器化应用容器化应用运行于宿主机上我们需要知道该容器的运行情况包括 CPU使用率、内存占用、网络状况以及磁盘空间等等一系列信息而且这些信息随时间变化我们称其为时序数据本文将实操 如何搭建一个可视化的监控中心 来收集这些承载着具体应用的容器的时序信息并可视化分析与展示 准备镜像 adviser负责收集容器的随时间变化的数据 influxdb负责存储时序数据 grafana负责分析和展示时序数据 部署Influxdb服务 可以将其视为一个数据库服务其确实用于存储数据。
923 0
使用Portainer或者UI for Docker可视化管理你的树莓派容器
本文讲的是使用Portainer或者UI for Docker可视化管理你的树莓派容器【编者的话】Stefan Scherer是Docker海盗船长,微软MVP。专注于Docker技术在ARM体系中应用。
4120 0
docker容器内启动mysql服务,报错:New main PID 99 does not belong to service, and PID file is not owned by root.
docker容器内启动mysql服务,报错:New main PID 99 does not belong to service, and PID file is not owned by root.
0 0
+关注
codesheep
个人公众号:CodeSheep | 个人博客:www.codesheep.cn
文章
问答
文章排行榜
最热
最新
相关电子书
更多
阿里云文件存储 NAS 在容器场景的最佳实践
立即下载
何种数据存储才能助力容器计算
立即下载
冬季实战营第四期:零基础容器技术实战
立即下载