hbase源码系列(一)Balancer 负载均衡-阿里云开发者社区

开发者社区> 岑玉海> 正文

hbase源码系列(一)Balancer 负载均衡

简介: 看源码很久了,终于开始动手写博客了,为什么是先写负载均衡呢,因为一个室友入职新公司了,然后他们遇到这方面的问题,某些机器的硬盘使用明显比别的机器要多,每次用hadoop做完负载均衡,很快又变回来了。
+关注继续查看
看源码很久了,终于开始动手写博客了,为什么是先写负载均衡呢,因为一个室友入职新公司了,然后他们遇到这方面的问题,某些机器的硬盘使用明显比别的机器要多,每次用hadoop做完负载均衡,很快又变回来了。

首先我们先看HMaster当中怎么初始化Balancer的,把集群的状态穿进去,设置master,然后执行初始化。

//initialize load balancer
this.balancer.setClusterStatus(getClusterStatus());
this.balancer.setMasterServices(this);
this.balancer.initialize();

然后调用是在HMaster的balance()方法当中调用

Map<TableName, Map<ServerName, List<HRegionInfo>>> assignmentsByTable =
        this.assignmentManager.getRegionStates().getAssignmentsByTable();

List<RegionPlan> plans = new ArrayList<RegionPlan>();
//Give the balancer the current cluster state.
this.balancer.setClusterStatus(getClusterStatus());
//针对表来做平衡,返回平衡方案,针对全局,可能不是最优解
for (Map<ServerName, List<HRegionInfo>> assignments : assignmentsByTable.values()) {
    List<RegionPlan> partialPlans = this.balancer.balanceCluster(assignments);
    if (partialPlans != null) plans.addAll(partialPlans);
}
可以看到它首先获取了当前的集群的分配情况,这个分配情况是根据表的 Map<TableName, Map<ServerName, List<HRegionInfo>>,然后遍历这个map的values,调用balancer.balanceCluster(assignments) 来生成一个partialPlans,生成RegionPlan(Region的移动计划) 。

我们就可以切换到StochasticLoadBalancer当中了,这个是默认Balancer具体的实现了,也是最好的实现,下面就说说这玩意儿咋实现的。

看一下注释,这个玩意儿吹得神乎其神的,它说它考虑到了这么多因素:

* <ul>
 * <li>Region Load</li> Region的负载
 * <li>Table Load</li>  表的负载
 * <li>Data Locality</li> 数据本地性
 * <li>Memstore Sizes</li> 内存Memstore的大小
 * <li>Storefile Sizes</li> 硬盘存储文件的大小
 * </ul>

好,我们从balanceCluster开始看吧,一进来第一件事就是判断是否需要平衡。

//不需要平衡就退出
if (!needsBalance(new ClusterLoadState(clusterState))) {
   return null;
}

平衡的条件是:负载最大值和最小值要在平均值(region数/server数)的+-slop值之间, 但是这个平均值是基于表的,因为我们传进去的参数clusterState就是基于表的。

// Check if we even need to do any load balancing
// HBASE-3681 check sloppiness first
float average = cs.getLoadAverage(); // for logging
//集群的负载最大值和最小值要在平均值的+-slop值之间
int floor = (int) Math.floor(average * (1 - slop));
int ceiling = (int) Math.ceil(average * (1 + slop));
if (!(cs.getMinLoad() > ceiling || cs.getMaxLoad() < floor)) {
    .....return false;
}
return true;
如果需要平衡的话,就开始计算开销了。
// Keep track of servers to iterate through them.
Cluster cluster = new Cluster(clusterState, loads, regionFinder);
//计算出来当前的开销    
double currentCost = computeCost(cluster, Double.MAX_VALUE);
double initCost = currentCost;
double newCost = currentCost;
 for (step = 0; step < computedMaxSteps; step++) {
         //随机挑选一个"选号器"
         int pickerIdx = RANDOM.nextInt(pickers.length);
         RegionPicker p = pickers[pickerIdx];
         //用选号器从集群当中随机跳出一对来,待处理的<server,region>对
         Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> picks = p.pick(cluster);
         int leftServer = picks.getFirst().getFirst();
         int leftRegion = picks.getFirst().getSecond();
         int rightServer = picks.getSecond().getFirst();
         int rightRegion = picks.getSecond().getSecond();
         cluster.moveOrSwapRegion(leftServer,
              rightServer,
              leftRegion,
              rightRegion);
        //移动或者交换完之后,看看新的开销是否要继续
         newCost = computeCost(cluster, currentCost);
         // Should this be kept? 挺好,保存新状态
         if (newCost < currentCost) {
            currentCost = newCost;
         } else {
   // 操作不划算,就回退
           cluster.moveOrSwapRegion(leftServer,
                rightServer,
                rightRegion,
                leftRegion);
       }
     if (initCost > currentCost) {
         //找到了满意的平衡方案
         List<RegionPlan> plans = createRegionPlans(cluster);
         return plans;
    }
上面的被我清除了细枝末节之后的代码主体,okay,上面逻辑过程如下:

1. 生成一个虚拟的集群cluster,方便计算计算当前状态的开销,其中clusterState是表的状态,loads是整个集群的状态。

// Keep track of servers to iterate through them.
Cluster cluster = new Cluster(clusterState, loads, regionFinder);
//计算出来当前的开销    
double currentCost = computeCost(cluster, Double.MAX_VALUE);
double initCost = currentCost;
double newCost = currentCost;

2. 然后循环computedMaxSteps次,随机从选出一个picker来计算平衡方案。

int pickerIdx = RANDOM.nextInt(pickers.length);
RegionPicker p = pickers[pickerIdx];
//用选号器从集群当中随机跳出一对来,待处理的<server,region>对
Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> picks = p.pick(cluster);

picker是啥?这里面有三个,第一个是RandomRegionPicker是随机挑选region,这里就不详细介绍了,主要讨论后面两个;第二个LoadPicker是计算负载的,第三个主要是考虑本地性的。给我感觉就很像ZF的摇号器一样,用哪种算法还要摇个号。

pickers = new RegionPicker[] {
      new RandomRegionPicker(),
      new LoadPicker(),
      localityPicker
};

下面我们先看localityPicker的pick方法,这个方法是随机抽选出来一个server、region,找出region的其他本地机器,然后他们返回。

@Override
    Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> pick(Cluster cluster) {
      if (this.masterServices == null) {
        return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
            new Pair<Integer, Integer>(-1,-1),
            new Pair<Integer, Integer>(-1,-1)
        );
      }
      // Pick a random region server 随机选出一个server来
      int thisServer = pickRandomServer(cluster);

      // Pick a random region on this server 随机选出region
      int thisRegion = pickRandomRegion(cluster, thisServer, 0.0f);

      if (thisRegion == -1) {
        return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
            new Pair<Integer, Integer>(-1,-1),
            new Pair<Integer, Integer>(-1,-1)
        );
      }

      // Pick the server with the highest locality 找出本地性最高的目标server
      int otherServer = pickHighestLocalityServer(cluster, thisServer, thisRegion);

      // pick an region on the other server to potentially swap
      int otherRegion = this.pickRandomRegion(cluster, otherServer, 0.5f);

      return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
          new Pair<Integer, Integer>(thisServer,thisRegion),
          new Pair<Integer, Integer>(otherServer,otherRegion)
      );
    }

okay,这个结束了,下面我们看看LoadPicker吧。

@Override
    Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> pick(Cluster cluster) {
      cluster.sortServersByRegionCount();
      //先挑选出负载最高的server
      int thisServer = pickMostLoadedServer(cluster, -1);
      //再选出除了负载最高的server之外负载最低的server
      int otherServer = pickLeastLoadedServer(cluster, thisServer);

      Pair<Integer, Integer> regions = pickRandomRegions(cluster, thisServer, otherServer);
      return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
          new Pair<Integer, Integer>(thisServer, regions.getFirst()),
          new Pair<Integer, Integer>(otherServer, regions.getSecond())

      );
    }
这里的负载高和负载低是按照Server上面的region数来算的,而不是存储文件啥的,选出负载最高和负载最低的时候,又随机抽出region来返回了。

pick挑选的过程介绍完了,那么很明显,计算才是重头戏了,什么样的region会导致计算出来的分数高低呢?

3. 重点在计算函数上 computeCost(cluster, Double.MAX_VALUE) 结果这个函数也超级简单,哈哈~

protected double computeCost(Cluster cluster, double previousCost) {
    double total = 0;
    
    for (CostFunction c:costFunctions) {
      if (c.getMultiplier() <= 0) {
        continue;
      }

      total += c.getMultiplier() * c.cost(cluster);

      if (total > previousCost) {
        return total;
      }
    }
    return total;
  }
遍历CostFunction,拿cost的加权平均和计算出来。

那costFunction里面都有啥呢?localityCost又出现了,看来本地性是一个很大的考虑的情况。

costFunctions = new CostFunction[]{
      new RegionCountSkewCostFunction(conf),
      new MoveCostFunction(conf),
      localityCost,
      new TableSkewCostFunction(conf),
      regionLoadFunctions[0],
      regionLoadFunctions[1],
      regionLoadFunctions[2],
      regionLoadFunctions[3],
};

 regionLoadFunctions = new CostFromRegionLoadFunction[] {
        new ReadRequestCostFunction(conf),
        new WriteRequestCostFunction(conf),
        new MemstoreSizeCostFunction(conf),
        new StoreFileCostFunction(conf)
     };

可以看出来,里面真正看中硬盘内容大小的,只有一个StoreFileCostFunction,cost的计算方式有些区别,但都是一个0-1之间的数字,下面给出里面5个函数都用过的cost的函数。

//cost函数
double max = ((count - 1) * mean) + (total - mean);
for (double n : stats) {
        double diff = Math.abs(mean - n);
        totalCost += diff;
}

double scaled =  scale(0, max, totalCost);
return scaled;

//scale函数
protected double scale(double min, double max, double value) {
      if (max == 0 || value == 0) {
        return 0;
      }

      return Math.max(0d, Math.min(1d, (value - min) / max));
}

经过分析吧,我觉得影响里面最后cost最大的是它的权重,下面给一下,这些function的默认权重。

RegionCountSkewCostFunction hbase.master.balancer.stochastic.regionCountCost ,默认值500

MoveCostFunction hbase.master.balancer.stochastic.moveCost,默认值是100

localityCost hbase.master.balancer.stochastic.localityCost,默认值是25

TableSkewCostFunction hbase.master.balancer.stochastic.tableSkewCost,默认值是35

ReadRequestCostFunction hbase.master.balancer.stochastic.readRequestCost,默认值是5

WriteRequestCostFunction hbase.master.balancer.stochastic.writeRequestCost,默认值是5

MemstoreSizeCostFunction hbase.master.balancer.stochastic.memstoreSizeCost,默认值是5

StoreFileCostFunction hbase.master.balancer.stochastic.storefileSizeCost,默认值是5

Storefile的默认值是5,那么低。。。可以试着提高一下这个参数,使它在计算cost消耗的时候,产生更加正向的意义,效果不好说。

4. 根据虚拟的集群状态生成RegionPlan,这里就不说了

List<RegionPlan> plans = createRegionPlans(cluster);

源码的分析完毕,要想减少存储内容分布不均匀,可以试着考虑增加一个picker,这样又不会缺少对其他条件的考虑,具体可以参考LoadPicker,复制它的实现再写一个,在pickMostLoadedServer和pickLeastLoadedServer这两个方法里面把考虑的条件改一下,以前的条件是Integer[] servers = cluster.serverIndicesSortedByRegionCount; 通过这个来查找一下负载最高和最低的server,那么现在我们要在Cluster里面增加一个Server ---> StoreFile大小的关系映射集合,但是这里面没有,只有regionLoads,RegionLoad这个类有一个方法getStorefileSizeMB可以获得StoreFile的大小,我们通过里面的region和server的映射regionIndexToServerIndex来最后计算出来这个映射关系即可,这个计算映射关系个过程放在Cluster的构造函数里面。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
5G背后那些你不知道的事儿,一对一直播app源码加速系列
对于一款直播社交软件来讲,动态的加入更能增加用户粘性,从喜怒哀乐的心情中增加互动性。这对于吸引新流量的加入是不言而喻的
1660 0
[UWP]涨姿势UWP源码——IsolatedStorage
原文:[UWP]涨姿势UWP源码——IsolatedStorage   前一篇涨姿势UWP源码分析从数据源着手,解释了RSS feed的获取和解析,本篇则会就数据源的保存和读取进行举例。   和之前的Windows Runtime一样,UWP采用IsolatedStorage的方式来存储APP的私有数据,这样做到APP之间互不干扰,减少了错误及安全隐患。
1090 0
hbase源码系列(一)Balancer 负载均衡
看源码很久了,终于开始动手写博客了,为什么是先写负载均衡呢,因为一个室友入职新公司了,然后他们遇到这方面的问题,某些机器的硬盘使用明显比别的机器要多,每次用hadoop做完负载均衡,很快又变回来了。
2432 0
阿里云服务器端口号设置
阿里云服务器初级使用者可能面临的问题之一. 使用tomcat或者其他服务器软件设置端口号后,比如 一些不是默认的, mysql的 3306, mssql的1433,有时候打不开网页, 原因是没有在ecs安全组去设置这个端口号. 解决: 点击ecs下网络和安全下的安全组 在弹出的安全组中,如果没有就新建安全组,然后点击配置规则 最后如上图点击添加...或快速创建.   have fun!  将编程看作是一门艺术,而不单单是个技术。
4518 0
OkHttp 3.7源码分析(二)——拦截器&一个实际网络请求的实现
前一篇博客中我们介绍了OkHttp的总体架构,接下来我们以一个具体的网络请求来讲述OkHttp进行网络访问的具体过程。由于该部分与OkHttp的拦截器概念紧密联系在一起,所以将这两部分放在一起进行讲解。
12590 0
+关注
64
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载