Processing math: 100%

修补DBA短板:监控SQL优化案例两则

简介:

一、表空间信息查询慢

前几天跟销售拜访潜在客户时,客户提到他们近期很头疼的问题:他们自己写的一个查询表空间的语句从上周开始跑不出来了,做了很多尝试未果,比较苦恼,毕竟作为DBA不知道库的空间使用情况,客户心里是有点发毛的。

听完客户描述,我也马上回复说这个问题很常见,都在我们日常巡检的范围内,解决起来很简单。一般查询表空间的语句都是用到了DBA_FREE_SPACE这张视图,查询起来慢,常见原因一般如下:

d47e62d2b349aca45e42305ed6714efbe5ed61d9 数据字典信息/固化视图统计信息过旧;
d47e62d2b349aca45e42305ed6714efbe5ed61d9 回收栈内对象过多。

处理方式:

exec dmbs_stats.gather_fixed_objects_stats;

exec dbms_stats.gather_dictionary_stats(degree =>8,cascade =>true);

purge recyclebin;

客户听完介绍的解决方案,表示认同并希望现场帮他们处理好问题,热情地带我去他的工位。虽然库并非生产数据库,但访问这个库依然需要通过堡垒机,而且命令需要手敲。

客户的演示

客户通过shell脚本SQLplus进入数据库后运行语句类似以下SQL:

SELECT UPPER(F.TABLESPACE_NAME) AS "表空间名称",

ROUND(D.AVAILB_BYTES ,2) AS "表空间大小(G)",

ROUND(D.MAX_BYTES,2) AS "最终表空间大小(G)",

ROUND((D.AVAILB_BYTES - F.USED_BYTES),2) AS "已使用空间(G)",

TO_CHAR(ROUND((D.AVAILB_BYTES - F.USED_BYTES) / D.AVAILB_BYTES * 100,

2), '999.99') AS "使用比",

ROUND(F.USED_BYTES, 6) AS "空闲空间(G)",

F.MAX_BYTES AS "最大块(M)"

FROM (

SELECT TABLESPACE_NAME,

ROUND(SUM(BYTES) / (1024 * 1024 * 1024), 6) USED_BYTES,

ROUND(MAX(BYTES) / (1024 * 1024 * 1024), 6) MAX_BYTES

FROM SYS.DBA_FREE_SPACE

GROUP BY TABLESPACE_NAME) F,

(SELECT DD.TABLESPACE_NAME,

ROUND(SUM(DD.BYTES) / (1024 * 1024 * 1024), 6) AVAILB_BYTES,

ROUND(SUM(DECODE(DD.MAXBYTES, 0, DD.BYTES, DD.MAXBYTES))/(1024*1024*1024),6) MAX_BYTES

FROM SYS.DBA_DATA_FILES DD

GROUP BY DD.TABLESPACE_NAME) D

WHERE D.TABLESPACE_NAME = F.TABLESPACE_NAME

ORDER BY 4 DESC

客户运行了脚本,果然卡住了一样,无返回结果。演示完,客户让出了座位,示意我可以上机操作了。因为不是生产库,客户也表示可以随意操作,于是没有去进一步确认信息,顺利完成了上面列的操作。

有趣的地方来了

客户开始验证效果的时候,比较尴尬,依然卡在那儿。客户地方没有监控,也没有我习惯的脚本,客户打开plSQLdeveloper后,我看了一下在运行的SQL等待事件是单块儿读,我有点犹豫要不要手敲那些工具SQL的时候,有趣的地方也来了~ 客户的DBA开始讨论起了原因:

一个客户DBA说,他觉得是IO太慢,因为库不是放在存储上的,而且raid可能用的是raid 5之类。

另一个客户DBA说,可能是数据库太大了,性能有影响。

为了避免问题走偏,我快速打了个快照,做了awr报告,确认了一下单块读约3ms,数据文件个数约800个。证伪了以上假设。

那到底为什么SQL查询还是不快呢?我有点犹豫,毕竟堡垒机命令都手敲不能直接跑自己的脚本包。客户主要负责的DBA此时主动给台阶让我下,让我找时间再看看,回去了再研究,毕竟他们也快下班了。

意外的效果

这个台阶当然不能下…… 在10046跟moitor报告中,个人还是更倾向monitor报告,于是脚本加了monitor的hint,打算再跑一次。另外一个会话准备编写脚本的时候,SQL瞬间出了结果。常用脚本这里也贴一下:

set pagesize 0 echo off timing off linesize 1000 trimspool on trim on long 2000000 longchunksize 2000000 feeDBAck off

spool &1..&2

--active/html/EM

select dbms_SQLtune.report_SQL_monitor(type=>'&2', SQL_id=>'&1', SQL_exec_id=>null, report_level=>'ALL') monitor_report from dual;

spool off

客户DBA说这个hint有效果,但是我也不打算糊弄客户,跟客户解释了这个hint跟跑起来快了没什么关系,并用 /*+ xxx */这个改动,再次运行,果然也很快。客户运行原来的语句,依然跑不出来。这时候,基本已经知道原因了。

虽然讲道理,收集了统计,SQL的执行计划应该是会失效,并重新解析的,这里显然那个SQL的执行计划应该还是原来的,没有变动。考虑到不是生产库,就直接flush了shared pool。再次运行那个问题SQL,顺利秒出结果。

二、ASH信息采集慢

某客户反馈监控上线后,在监控的数十套数据库中有一套库监控SQL的数据库时间占比较高,监控自身显示是一条采集ASH数据的语句。经过了解,其他库该语句执行均在1s以内,在其中一个数据库上运行时间可达4分钟,监控中我们马上发现了该SQL的监视报告。

监视报告快速定位

打开报告,通过Wait Activity中可发现55%时间是read by other session等待事件,还有36%为gc相关等待事件,结合2GB的IO,可以基本可知问题原因为SQL读取IO量过多,在RAC高并发环境下,性能问题被放大。

cbca5c1f5d1943d7d890e2c5893a77e07d5fcdd2

那么,这2GB的IO来源于哪儿呢?执行计划很长,截取部分如下:


第一部分IO占54%来源WRH$_ACTIVE_SESSION_HISTORY:

8ac73c28afb398dc977b98dde9ed83291c03525c

第二部分IO占46%来源WRH$_ACTIVE_SESSION_HISTORY:

28b494065dc7928562342679f31b367589601631

通过报告可明显观察到整个SQL消耗的IO基本来源于WRH$_ACTIVE_SESSION_HISTORY这张表。监视报告中选中plan,再以Tabular方式查看,可查看访问表的谓词,正常情况下这个表是会分区的,目前看起来数据都集中在了一个分区。

c28c1f45ff5f887c032bc660547e38faea9228d1

运行以下代码段确认信息:

代码段如下:

set serveroutput on

declare

CURSOR cur_part IS

SELECT partition_name from DBA_tab_partitions

WHERE table_name = 'WRH$_ACTIVE_SESSION_HISTORY';

query1 varchar2(200);

query2 varchar2(200);

TYPE partrec IS RECORD (snapid number, dbid number);

TYPE partlist IS TABLE OF partrec;

Outlist partlist;

begin

dbms_output.put_line('PARTITION NAME SNAP_ID DBID');

dbms_output.put_line('--------------------------- ------- ----------');

for part in cur_part loop

query1 := 'select min(snap_id), dbid from sys.WRH$_ACTIVE_SESSION_HISTORY partition ('||part.partition_name||') group by dbid';

execute immediate query1 bulk collect into OutList;

if OutList.count > 0 then

for i in OutList.first..OutList.last loop

dbms_output.put_line(part.partition_name||' Min '||OutList(i).snapid||' '||OutList(i).dbid);

end loop;

end if;

query2 := 'select max(snap_id), dbid from sys.WRH$_ACTIVE_SESSION_HISTORY partition ('||part.partition_name||') group by dbid';

execute immediate query2 bulk collect into OutList;

if OutList.count > 0 then

for i in OutList.first..OutList.last loop

dbms_output.put_line(part.partition_name||' Max '||OutList(i).snapid||' '||OutList(i).dbid);

dbms_output.put_line('---');

end loop;

end if;

end loop;

end;

/

(上下滑动查看完整代码)

如下可发现表并自动未分区:

db7069336bc91bc85ec0bd8a803afa1850ec4a6f

正常情况下分区是自动创建并清理的,如下:

PARTITION NAME SNAP_ID DBID

--------------------------- ------- ----------

WRH$_ACTIVE_1489418862_4171 Min 4180 1489418862

WRH$_ACTIVE_1489418862_4171 Max 4181 1489418862

---

WRH$_ACTIVE_1489418862_4182 Min 4182 1489418862

WRH$_ACTIVE_1489418862_4182 Max 4194 1489418862

---

WRH$_ACTIVE_1489418862_4195 Min 4195 1489418862

WRH$_ACTIVE_1489418862_4195 Max 4218 1489418862

---

WRH$_ACTIVE_1489418862_4219 Min 4219 1489418862

WRH$_ACTIVE_1489418862_4219 Max 4242 1489418862

---

WRH$_ACTIVE_1489418862_4243 Min 4243 1489418862

WRH$_ACTIVE_1489418862_4243 Max 4266 1489418862

---

WRH$_ACTIVE_1489418862_4267 Min 4267 1489418862

WRH$_ACTIVE_1489418862_4267 Max 4290 1489418862

---

WRH$_ACTIVE_1489418862_4291 Min 4291 1489418862

WRH$_ACTIVE_1489418862_4291 Max 4314 1489418862

以下为清除ASH数据的方式:

exec DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE(low_snap_id =>2810,high_snap_id =>18000);

alter table WRH$_ACTIVE_SESSION_HISTORY shrink space;

DROP_SNAPSHOT_RANGE 处理方式上本质为delete相关数据,实际执行时间很长(这次夜间执行用了6小时),shrink操作也是执行了半个小时。可以考虑直接把这个大分区truncate掉(当然会丢部分性能数据)。

alter table sys.wrhactivesessionhistorytruncatepartitionWRH_ACTIVE_xxxx_xxxx update global indexes;
96344aab6da39ebae2a14a71c8fa9d20ff8b9a1a

上述操作完成后,SQL已经能秒出了,然而源头问题分区表WRH$_ACTIVE_SESSION_HISTORY 是否能自动新建分区,并自动清理过期ASH数据通过以下命令(官方推荐处理方式,参考文档 387914.1)并不一定达到想要的效果。

alter session set "_swrf_test_action" = 72;
65ec7cbe27649cbeca43fafe2a687342838a1b50

本文处理时有点经验主义,这步操作没抱太大期望,结果顺利达到预期效果。也有相当部分场景执行命令后还是不能自动分区,这时候,没错要打补丁了。数据库版本从11.2.0.2到12.1.0.1,可在线打。

722d44cde052ca92a65acb4461e3da2194cc7937


原文发布时间为:2018-06-27
本文作者:蒋健
本文来自云栖社区合作伙伴“ DBAplus社群”,了解相关信息可以关注“ DBAplus社群”。
目录
打赏
0
0
0
0
73514
分享
相关文章
|
2月前
|
通义灵码在DBA日常SQL优化中的使用分享
通义灵码在DBA日常SQL优化中的使用分享
158 1
通义灵码在DBA日常SQL优化中的使用分享
使用访问指导(SQL Access Advisor)优化数据库业务负载
本文介绍了Oracle的SQL访问指导(SQL Access Advisor)的应用场景及其使用方法。访问指导通过分析给定的工作负载,提供索引、物化视图和分区等方面的优化建议,帮助DBA提升数据库性能。具体步骤包括创建访问指导任务、创建工作负载、连接工作负载至访问指导、设置任务参数、运行访问指导、查看和应用优化建议。访问指导不仅针对单条SQL语句,还能综合考虑多条SQL语句的优化效果,为DBA提供全面的决策支持。
75 11
Spark SQL向量化执行引擎框架Gluten-Velox在AArch64使能和优化
本文摘自 Arm China的工程师顾煜祺关于“在 Arm 平台上使用 Native 算子库加速 Spark”的分享,主要内容包括以下四个部分: 1.技术背景 2.算子库构成 3.算子操作优化 4.未来工作
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
SQL慢查询优化策略
在数据库管理和应用开发中,SQL查询的性能优化至关重要。慢查询优化不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将详细介绍针对SQL慢查询的优化策略。
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL优化案例-关联顺序优化
gbase 8a 数据库 SQL优化案例-关联顺序优化
|
2月前
|
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
140 3
|
2月前
|
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
218 10
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等