阿里云MVP Meetup 《云数据·大计算:海量日志数据分析与应用》之《数据质量监控》篇

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本手册为阿里云MVP Meetup Workshop《云计算·大数据:海量日志数据分析与应用》的《数据质量监控》篇而准备。主要阐述在使用大数据开发套件过程中如何将已经采集至MaxCompute上的日志数据质量进行监控,学员可以根据本实验手册,去学习如何创建表的监控规则,如何去订阅表等。

实验涉及大数据产品

实验环境准备

必备条件:

  • 开通大数据计算服务MaxCompute
  • 创建大数据开发套件项目空间

进入大数据开发套件,创建DataWorks项目空间

确保阿里云账号处于登录状态。

  • step1:点击进入大数据(数加)管理控制台>大数据开发套件tab页面下。
  • step2:点击右上角创建项目或者直接在项目列表-->创建项目,跳出创建项目对话框。
    1

选择相应的服务器时如果没有购买是选择不了会提示您去开通购买。数据开发、运维中心、数据管理默认是被选择中。

  • step3:勾选相应的服务单击 确认,跳转到下面的界面,填写相应的信息单击确认,创建项目完成。
    2

项目名需要字母或下划线开头,只能包含字母下划线和数字。
【注意】项目名称全局唯一,建议大家采用自己容易区分的名称来作为本次workshop的项目空间名称。

  • step4:单击进入项目跳转到下面的界面:
    进入大数据开发套件

数据质量

数据质量(DQC),是支持多种异构数据源的质量校验、通知、管理服务的一站式平台。数据质量以数据集(DataSet)为监控对象,目前支持MaxCompute数据表和DataHub实时数据流的监控,当离线MaxCompute数据发生变化时,数据质量会对数据进行校验,并阻塞生产链路,以避免问题数据污染扩散。同时,数据质量提供了历史校验结果的管理,以便您对数据质量分析和定级。在流式数据场景下,数据质量能够基于Datahub数据通道进行断流监控,第一时间告警给订阅用户,并且支持橙色、红色告警等级,以及告警频次设置,以最大限度的减少冗余报警。

数据质量的使用流程是,针对已有的表进行监控规则配置,配置完规则后可以进行试跑,验证此规则是否试用。当试跑成功后,可将此规则和调度任务进行关联。关联成功后,每次调度任务代码运行完毕,都会触发数据质量的校验规则,以提升任务准确性。在关联调度后,可根据业务情况,对重要的表进行订阅。订阅成功后,此表的数据质量一旦出问题,都会有邮件或者报警进行通知。

注:数据质量会产生额外的计算费用,在使用时请注意。

新增表规则配置

若已完成《日志数据上传》、《用户画像》实验,我们会得到表:ods_raw_log_d、ods_user_info_d、ods_log_info_d、dw_user_info_all_d、rpt_user_info_d。

数据质量最重要的就是表规则的配置,那么如何配置表规则才是合理的呢?我们来看一下上面这几张表应该如何配置表规则。

ods_raw_log_d

数据质量中可以看到该项目下的所有表信息,现在我们来给 ods_raw_log_d 表进行数据质量的监控规则配置。

image

选择ods_raw_log_d表,点击配置监控规则,将会进入如下页面。

image

我们可以回顾一下 ods_raw_log_d 这张表的数据来源,ods_raw_log_d 这张表的数据是从ftp中获取到的日志数据,其分区是以${bdp.system.bizdate}格式写入进表中("dbp.system.bizdate" 是获取到前一天的日期)。

image

对于这种每日的日志数据,我们可以配置一下表的分区表达式,分区表达式有如下几种,我们选择 dt=$[yyyymmdd-1] 这种表达式,有关调度表达式的详细解读,请参考文档调度参数

image
image

注:若表中无分区列,可以配置无分区,请根据真实的分区值,来配置对应的分区表达式。

确认以后,可以见到如下界面,我们可以选择创建规则。

image

选择创建规则后,出现如下界面:

image

点击添加监控规则,会出现一个提示窗,来配置规则。

image

这张表里的数据来源于FTP上传的日志文件,作为源头表,我们需要尽早判断此表分区中是否有数据。如果这张表中没有数据,那么就需要阻止后面的任务运行,因为来源表没有数据,后面的任务运行是没有意义的。

注:只有强规则下红色报警会导致任务阻塞,阻塞会将任务的实例状态置为失败。

我们在配置规则的时候,选择模板类型为表行数,将规则的强度设置为强,比较方式设置为期望值不等于0,设置完毕后点击批量保存按钮即可。

image

此配置主要是为了避免分区中没有数据,导致下游任务的数据来源为空的问题。

规则试跑

右上角有一个节点试跑的按钮,可以在规则配置完毕后,进行规则校验,试跑按钮可立即触发数据质量的校验规则。

image

点击试跑按钮后,会提示一个弹窗,确认试跑日期。点击试跑后,下方会有一个提示信息,点击提示信息,可跳转至试跑结果中。

image

image

可根据试跑结果,来确认此次任务产出的数据是否符合预期。建议每个表规则配置完毕后,都进行一次试跑操作,以验证表规则的适用性。

在规则配置完毕,且试跑又都成功的情况下。我们需要将表和其产出任务进行关联,这样每次表的产出任务运行完毕后,都会触发数据质量规则的校验,以保证数据的准确性。

关联调度

数据质量支持任务关联调度,在表规则和调度任务绑定后,每次任务运行完毕,都会触发数据质量的检查。可以在表规则配置界面,点击关联调度,配置规则与任务的绑定关系。

image

点击关联调度,可以与已提交到调度的节点任务进行绑定,我们会根据血缘关系给出推荐绑定的任务,也支持自定义绑定。

image

选中搜索结果后,点击添加,添加完毕后即可完成与调度节点任务的绑定。

image

关联调度后,表名后面的小图标会变成蓝色。

image

配置任务订阅

关联调度后,每次调度任务运行完毕,都会触发数据质量的校验,但是我们如何去跟进校验结果呢?数据质量支持设置规则订阅,可以针对重要的表及其规则设置订阅,设置订阅后会根据数据质量的校验结果,进行告警。若数据质量校验结果异常,则会根据配置的告警策略进行通知。

点击订阅管理,设置接收人以及订阅方式,目前支持邮件通知及邮件和短信通知。

image
image
image

订阅管理设置完毕后,可以在我的订阅中进行查看及修改。

image

建议将全部规则订阅,避免校验结果无法及时通知。

ods_user_info_d

ods_user_info_d 表的数据来至于rds的数据库,为用户信息表。我们在配置规则的时候,需要配置表的行数校验;还需要配置主键唯一的校验,避免数据重复。

同样,我们还是需要先配置一个分区字段的监控规则,监控的时间表达式为:dt=$[yyyymmdd-1],配置成功后,在已添加的分区表达式中可以看到成功的分区配置记录。

image

分区表达式配置完毕后,点击右侧的创建规则,进行数据质量的校验规则配置。
添加表行数的监控规则,规则强度设置为强,比较方式设置为期望值不等于0。

image

添加列级规则,设置主键列(uid)为监控列,模板类型为:字段重复值个数校验,规则设置为弱,比较方式设置为字段重复值个数小于1,设置完毕后,点击批量保存按钮即可。

image

此配置主要是为了避免数据重复,导致下游数据被污染的情况。

请不要忘记试跑->关联调度->规则订阅。

ods_log_info_d

ods_log_info_d 这张表的数据,主要是解析ods_raw_log_d 表里的数据,鉴于日志中的数据无法配置过多监控,只需配置表数据不为空的校验规则即可。
先配置表的分区表达式为:dt=$[yyyymmdd-1]

image

配置表数据不为空的校验规则,规则强度设置为强,比较方式设置为期望值不等于0,设置完毕后,点击批量保存按钮即可。

image

请不要忘记试跑->关联调度->规则订阅。

dw_user_info_all_d

dw_user_info_all_d 这个表是针对ods_user_info_d 和 ods_log_info_d 表的数据汇总,由于此流程较为简单,ods层又都已配置了表行数不为空的规则,所以此表不进行数据质量监控规则的配置,以节省计算资源。

rpt_user_info_d

rpt_user_info_d 表是数据汇总后的结果表,根据此表的数据,我们可以进行表行数波动监测,针对主键进行唯一值校验等。
先配置表的分区表达式:dt=$[yyyymmdd-1]

image

然后配置监控规则,单击右侧创建规则,点击添加监控规则。
添加列级规则,设置主键列(uid)为监控列,模板类型为:字段重复值个数校验,规则设置为弱,比较方式设置为字段重复值个数小于1。

image

继续添加监控规则,添加表级规则,模板类型为:SQL任务表行数,7天波动检测;规则强度设置为弱,橙色阈值设置成0%,红色阈值设置成50%(此处阈值范围根据业务逻辑进行设置),配置完毕后,点击批量保存即可。

image

注:此处我们监控表行数主要是为了查看每日uv的波动,好及时了解应用动态。

请不要忘记试跑->关联调度->规则订阅。

大家可能注意到了,我们在设置表规则强度的时候,数据仓库中越底层的表,设置强规则的次数越多。那是因为ods层的数据作为数仓中的原始数据,一定要保证其数据的准确性,避免因ods层的数据质量太差而影响其他层的数据,及时止损。

数据质量还提供了一个任务查询的界面,在此界面上,我们可以查看已配置规则的校验结果。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
15天前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
54 11
|
1月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
75 5
|
26天前
|
数据采集 数据可视化 数据挖掘
数据驱动决策:BI工具在数据分析和业务洞察中的应用
【10月更文挑战第28天】在信息爆炸的时代,数据成为企业决策的重要依据。本文综述了商业智能(BI)工具在数据分析和业务洞察中的应用,介绍了数据整合、清洗、可视化及报告生成等功能,并结合实际案例探讨了其价值。BI工具如Tableau、Power BI、QlikView等,通过高效的数据处理和分析,助力企业提升竞争力。
43 5
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
44 2
|
2月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
某A保险公司的 数据图表和数据分析
某A保险公司的 数据图表和数据分析
61 0
某A保险公司的 数据图表和数据分析
|
2月前
|
SQL 存储 人工智能
阿里云日志服务的傻瓜式极易预测模型
预测服务有助于提前规划,减少资源消耗和成本。阿里云日志服务的AI预测服务简化了数学建模,仅需SQL操作即可预测未来指标,具备高准确性,并能处理远期预测。此外,通过ScheduledSQL功能,可将预测任务自动化,定时执行并保存结果。
72 3
|
2月前
|
搜索推荐 数据挖掘
ChatGPT数据分析应用——漏斗分析
ChatGPT数据分析应用——漏斗分析
|
2月前
|
数据可视化 搜索推荐 数据挖掘
ChatGPT数据分析应用——同期群分析
ChatGPT数据分析应用——同期群分析
|
2月前
|
数据可视化 数据挖掘 数据处理
ChatGPT数据分析应用——热力图分析
ChatGPT数据分析应用——热力图分析