阿里云MVP Meetup 《云数据·大计算:海量日志数据分析与应用》之《数据质量监控》篇

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 本手册为阿里云MVP Meetup Workshop《云计算·大数据:海量日志数据分析与应用》的《数据质量监控》篇而准备。主要阐述在使用大数据开发套件过程中如何将已经采集至MaxCompute上的日志数据质量进行监控,学员可以根据本实验手册,去学习如何创建表的监控规则,如何去订阅表等。

实验涉及大数据产品

实验环境准备

必备条件:

  • 开通大数据计算服务MaxCompute
  • 创建大数据开发套件项目空间

进入大数据开发套件,创建DataWorks项目空间

确保阿里云账号处于登录状态。

  • step1:点击进入大数据(数加)管理控制台>大数据开发套件tab页面下。
  • step2:点击右上角创建项目或者直接在项目列表-->创建项目,跳出创建项目对话框。
    1

选择相应的服务器时如果没有购买是选择不了会提示您去开通购买。数据开发、运维中心、数据管理默认是被选择中。

  • step3:勾选相应的服务单击 确认,跳转到下面的界面,填写相应的信息单击确认,创建项目完成。
    2

项目名需要字母或下划线开头,只能包含字母下划线和数字。
【注意】项目名称全局唯一,建议大家采用自己容易区分的名称来作为本次workshop的项目空间名称。

  • step4:单击进入项目跳转到下面的界面:
    进入大数据开发套件

数据质量

数据质量(DQC),是支持多种异构数据源的质量校验、通知、管理服务的一站式平台。数据质量以数据集(DataSet)为监控对象,目前支持MaxCompute数据表和DataHub实时数据流的监控,当离线MaxCompute数据发生变化时,数据质量会对数据进行校验,并阻塞生产链路,以避免问题数据污染扩散。同时,数据质量提供了历史校验结果的管理,以便您对数据质量分析和定级。在流式数据场景下,数据质量能够基于Datahub数据通道进行断流监控,第一时间告警给订阅用户,并且支持橙色、红色告警等级,以及告警频次设置,以最大限度的减少冗余报警。

数据质量的使用流程是,针对已有的表进行监控规则配置,配置完规则后可以进行试跑,验证此规则是否试用。当试跑成功后,可将此规则和调度任务进行关联。关联成功后,每次调度任务代码运行完毕,都会触发数据质量的校验规则,以提升任务准确性。在关联调度后,可根据业务情况,对重要的表进行订阅。订阅成功后,此表的数据质量一旦出问题,都会有邮件或者报警进行通知。

注:数据质量会产生额外的计算费用,在使用时请注意。

新增表规则配置

若已完成《日志数据上传》、《用户画像》实验,我们会得到表:ods_raw_log_d、ods_user_info_d、ods_log_info_d、dw_user_info_all_d、rpt_user_info_d。

数据质量最重要的就是表规则的配置,那么如何配置表规则才是合理的呢?我们来看一下上面这几张表应该如何配置表规则。

ods_raw_log_d

数据质量中可以看到该项目下的所有表信息,现在我们来给 ods_raw_log_d 表进行数据质量的监控规则配置。

image

选择ods_raw_log_d表,点击配置监控规则,将会进入如下页面。

image

我们可以回顾一下 ods_raw_log_d 这张表的数据来源,ods_raw_log_d 这张表的数据是从ftp中获取到的日志数据,其分区是以${bdp.system.bizdate}格式写入进表中("dbp.system.bizdate" 是获取到前一天的日期)。

image

对于这种每日的日志数据,我们可以配置一下表的分区表达式,分区表达式有如下几种,我们选择 dt=$[yyyymmdd-1] 这种表达式,有关调度表达式的详细解读,请参考文档调度参数

image
image

注:若表中无分区列,可以配置无分区,请根据真实的分区值,来配置对应的分区表达式。

确认以后,可以见到如下界面,我们可以选择创建规则。

image

选择创建规则后,出现如下界面:

image

点击添加监控规则,会出现一个提示窗,来配置规则。

image

这张表里的数据来源于FTP上传的日志文件,作为源头表,我们需要尽早判断此表分区中是否有数据。如果这张表中没有数据,那么就需要阻止后面的任务运行,因为来源表没有数据,后面的任务运行是没有意义的。

注:只有强规则下红色报警会导致任务阻塞,阻塞会将任务的实例状态置为失败。

我们在配置规则的时候,选择模板类型为表行数,将规则的强度设置为强,比较方式设置为期望值不等于0,设置完毕后点击批量保存按钮即可。

image

此配置主要是为了避免分区中没有数据,导致下游任务的数据来源为空的问题。

规则试跑

右上角有一个节点试跑的按钮,可以在规则配置完毕后,进行规则校验,试跑按钮可立即触发数据质量的校验规则。

image

点击试跑按钮后,会提示一个弹窗,确认试跑日期。点击试跑后,下方会有一个提示信息,点击提示信息,可跳转至试跑结果中。

image

image

可根据试跑结果,来确认此次任务产出的数据是否符合预期。建议每个表规则配置完毕后,都进行一次试跑操作,以验证表规则的适用性。

在规则配置完毕,且试跑又都成功的情况下。我们需要将表和其产出任务进行关联,这样每次表的产出任务运行完毕后,都会触发数据质量规则的校验,以保证数据的准确性。

关联调度

数据质量支持任务关联调度,在表规则和调度任务绑定后,每次任务运行完毕,都会触发数据质量的检查。可以在表规则配置界面,点击关联调度,配置规则与任务的绑定关系。

image

点击关联调度,可以与已提交到调度的节点任务进行绑定,我们会根据血缘关系给出推荐绑定的任务,也支持自定义绑定。

image

选中搜索结果后,点击添加,添加完毕后即可完成与调度节点任务的绑定。

image

关联调度后,表名后面的小图标会变成蓝色。

image

配置任务订阅

关联调度后,每次调度任务运行完毕,都会触发数据质量的校验,但是我们如何去跟进校验结果呢?数据质量支持设置规则订阅,可以针对重要的表及其规则设置订阅,设置订阅后会根据数据质量的校验结果,进行告警。若数据质量校验结果异常,则会根据配置的告警策略进行通知。

点击订阅管理,设置接收人以及订阅方式,目前支持邮件通知及邮件和短信通知。

image
image
image

订阅管理设置完毕后,可以在我的订阅中进行查看及修改。

image

建议将全部规则订阅,避免校验结果无法及时通知。

ods_user_info_d

ods_user_info_d 表的数据来至于rds的数据库,为用户信息表。我们在配置规则的时候,需要配置表的行数校验;还需要配置主键唯一的校验,避免数据重复。

同样,我们还是需要先配置一个分区字段的监控规则,监控的时间表达式为:dt=$[yyyymmdd-1],配置成功后,在已添加的分区表达式中可以看到成功的分区配置记录。

image

分区表达式配置完毕后,点击右侧的创建规则,进行数据质量的校验规则配置。
添加表行数的监控规则,规则强度设置为强,比较方式设置为期望值不等于0。

image

添加列级规则,设置主键列(uid)为监控列,模板类型为:字段重复值个数校验,规则设置为弱,比较方式设置为字段重复值个数小于1,设置完毕后,点击批量保存按钮即可。

image

此配置主要是为了避免数据重复,导致下游数据被污染的情况。

请不要忘记试跑->关联调度->规则订阅。

ods_log_info_d

ods_log_info_d 这张表的数据,主要是解析ods_raw_log_d 表里的数据,鉴于日志中的数据无法配置过多监控,只需配置表数据不为空的校验规则即可。
先配置表的分区表达式为:dt=$[yyyymmdd-1]

image

配置表数据不为空的校验规则,规则强度设置为强,比较方式设置为期望值不等于0,设置完毕后,点击批量保存按钮即可。

image

请不要忘记试跑->关联调度->规则订阅。

dw_user_info_all_d

dw_user_info_all_d 这个表是针对ods_user_info_d 和 ods_log_info_d 表的数据汇总,由于此流程较为简单,ods层又都已配置了表行数不为空的规则,所以此表不进行数据质量监控规则的配置,以节省计算资源。

rpt_user_info_d

rpt_user_info_d 表是数据汇总后的结果表,根据此表的数据,我们可以进行表行数波动监测,针对主键进行唯一值校验等。
先配置表的分区表达式:dt=$[yyyymmdd-1]

image

然后配置监控规则,单击右侧创建规则,点击添加监控规则。
添加列级规则,设置主键列(uid)为监控列,模板类型为:字段重复值个数校验,规则设置为弱,比较方式设置为字段重复值个数小于1。

image

继续添加监控规则,添加表级规则,模板类型为:SQL任务表行数,7天波动检测;规则强度设置为弱,橙色阈值设置成0%,红色阈值设置成50%(此处阈值范围根据业务逻辑进行设置),配置完毕后,点击批量保存即可。

image

注:此处我们监控表行数主要是为了查看每日uv的波动,好及时了解应用动态。

请不要忘记试跑->关联调度->规则订阅。

大家可能注意到了,我们在设置表规则强度的时候,数据仓库中越底层的表,设置强规则的次数越多。那是因为ods层的数据作为数仓中的原始数据,一定要保证其数据的准确性,避免因ods层的数据质量太差而影响其他层的数据,及时止损。

数据质量还提供了一个任务查询的界面,在此界面上,我们可以查看已配置规则的校验结果。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
26天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
123 71
|
2月前
|
数据采集 监控 数据可视化
BI工具在数据分析和业务洞察中的应用
BI工具在数据分析和业务洞察中的应用
102 11
|
2月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
114 5
|
25天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
135 73
|
22天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
66 22
|
27天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
65 5
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
212 1
|
2月前
|
缓存 NoSQL 数据库
运用云数据库 Tair 构建缓存为应用提速,完成任务得苹果音响、充电套装等好礼!
本活动将带大家了解云数据库 Tair(兼容 Redis),通过体验构建缓存以提速应用,完成任务,即可领取罗马仕安卓充电套装,限量1000个,先到先得。邀请好友共同参与活动,还可赢取苹果 HomePod mini、小米蓝牙耳机等精美好礼!
|
2月前
|
数据采集 数据可视化 数据挖掘
数据驱动决策:BI工具在数据分析和业务洞察中的应用
【10月更文挑战第28天】在信息爆炸的时代,数据成为企业决策的重要依据。本文综述了商业智能(BI)工具在数据分析和业务洞察中的应用,介绍了数据整合、清洗、可视化及报告生成等功能,并结合实际案例探讨了其价值。BI工具如Tableau、Power BI、QlikView等,通过高效的数据处理和分析,助力企业提升竞争力。
82 5

热门文章

最新文章