Man vs. AI – Six Fields Where Artificial Intelligence Are Surpassing Human Intelligence

简介: From speech recognition to website design, artificial intelligence has been rapidly improving and is becoming an integral part of our lives.

Unlike the human brain, which can handle multiple tasks at once, computers must “think” linearly to achieve intelligence. Despite this limitation, there are many areas in which AI has already advanced beyond human intelligence. With technologies such as deep neural networks, machines have learned how to talk, drive cars, win video games, paint pictures, and assist in making scientific discoveries.

In this blog, we will look at the six areas where artificial neural networks have proven that they can go above and beyond the limits of human intelligence.

1. Image and Object Recognition

Machine intelligence has a good track record of image and object recognition. The capsule networks created by Geoffrey Hinton have almost halved the best previous error rate on a test that challenges software to recognize toys such as trucks and cars from different angles. Even if the angle of view is different from the previously analyzed views, these capsules use generalization of objects in a geometric space to allow the system to better identify objects while also requiring fewer images to do so.

Another example comes from a state-of-the-art network which has been trained to mark images in a database such that it can classify them better than a doctor with over 100 hours of training hours on the same task.

2. Video Games

You may have heard of IBM's Deep Blue and DeepMind's AlphaGo, both receiving global attention by beating world champions in chess and Go, respectively. But did you know that AI is also well adapted to video games?

Researchers have used deep learning to teach computers to play games such as Atari’s Breakout. The researchers in this experiment did not teach or pre-program the computers to play the games in a specific way. Instead, the computer is given control of the keyboard while it keeps track of the score. The computer will then learn autonomously, with the goal of maximizing the score. After playing only for two hours, the computer became an expert at the game.

The deep learning community is racing to train computers to beat humans at almost every game imaginable. This includes games such as Space Invaders, Doom, and World of Warcraft. With most of these games, the deep learning network has surpassed even the most experienced of players. Computers are not initially programmed to play these games; they learn them on the go by playing the game.

3. Speech Generation and Recognition

Last year, Google released WaveNet and Baidu launched Deep Speech. Both are deep learning networks that automatically generate human voice. The system learns to imitate human voices and, over time, improves its own ability to imitate them. It has grown increasingly difficult to distinguish their words from the speech of a real human.

LipNet—a deep network created by Oxford University with funding from Alphabet’s DeepMind— has achieved a 93% success in reading people's lips. The best of human lip readers have only a 52% success rate. A team at the University of Washington used lip sync to create a system that adds synthetic audio to an existing video.

4. Imitation of Art and Style

While the previous three areas may not come as a surprise, AI has also been making significant progress in the field of arts. You can use neural networks to study a given piece of art’s strokes, colors, and shadows. You can create a new image based on the original style of the artist, or even recreating a piece with a different style.

For example, Deepart.io is an example of a company-created application that has used deep learning techniques to learn hundreds of distinctive styles. You can apply these styles to photos. Artist and programmer Gene Kogan has also used stylistic transformations to modify the Mona Lisa based on algorithmic styles learned from Egyptian hieroglyphics.

5. Predictions

Timnit Gebro, a researcher at Stanford University, took 50 million photos from Google Street View to explore the ability of a deep learning network. The computer quickly learned to locally identify cars. Moreover, it individually identified more than 22 million vehicles including their manufactures, styles, models and years. One example of the applications this system has is figuring out the beginning and end of voter routes. According to the analysis provided, “if the number of sedans seen in a 15-minute drive exceeds the number of pickup trucks seen, the city has an 88% probability of voting for Democrats in the next presidential election.”

Another example of a machine intelligence that provides far more accurate predictions than humans would be Google’s Project SunRoof. The technology uses aerial photographs from Google Earth to create a 3D model of the roof and to distinguish it from the surrounding trees and shadows. It then uses the sun's trajectory to predict how much energy the solar panel can generate from this roof according to its position and specifications.

6. Website Design Modification

When it comes to website design, user behavior analysis is one of the key elements in providing optimal user experience. One can use the integration of artificial intelligence into the building of websites to efficiently modify the site and may even be more accurate than work done by human designers. The underlying technology of a system like this provides an average user’s opinion of the site's appearance. This allows the designers to determine whether the site is well designed or not. Today, web designers may be using a deep network to modify their designs, or they may be planning to use deep networks in the very near future.

What Does It All Mean for Humanity

With the endless possibilities of AI, it is no surprise that AI is perceived as a threat to humanity. However, the advancements in AI can also be beneficial in helping us making new scientific discoveries and improving the quality of life for the society. Applications such as Alibaba Cloud's ET Brain are aimed at tackling the most solving complex business and social problems. It is undeniable that AI is powerful, but ultimately, it all comes down to how we design and use it.

In this blog, we looked at six distinct aspects, where artificial neural network shave surpassed human intelligence. From speech generation to website modification, artificial neural networks have shown its possibilities. I firmly believe that this is just the tip of the iceberg to its vast capabilities.

Original article: https://mp.weixin.qq.com/s/DehAUE2uxBSjoPaFl4jFVQ

目录
相关文章
|
7月前
|
人工智能 缓存 关系型数据库
Mistral AI vs. Meta:顶级开源LLM比较
为了提高性能,大型语言模型(llm)通常会通过增加模型大小的方法来实现这个目标,但是模型大小的增加也增加了计算成本和推理延迟,增加了在实际场景中部署和使用llm的障碍。
188 2
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能发音评估(Artificial Intelligence Pronunciation Scoring, AI-PS)
人工智能发音评估(Artificial Intelligence Pronunciation Scoring, AI-PS)
575 2
|
2月前
|
人工智能 机器人 芯片
【通义】AI视界|苹果发布macOS Sequoia 15.1最新公测版:可体验Apple Intelligence
本文概览了近期科技动态,包括英伟达与台积电合作遇阻、亿万富翁投资者Druckenmiller后悔清仓英伟达、阿斯麦财报显示芯片需求复苏缓慢、苹果发布macOS Sequoia 15.1公测版及波士顿动力与丰田合作推进人形机器人技术。更多信息,请访问通义。
|
2月前
|
数据采集 人工智能 搜索推荐
【通义】AI视界|迎接Apple Intelligence,Mac家族进入M4芯片时代
本文概览了近期科技领域的五大热点:苹果宣布Apple Intelligence将于2025年4月支持中文;新款Mac将搭载M4芯片;ChatGPT周活跃用户达2.5亿,主要收入来自订阅;Meta开发AI搜索引擎减少对外部依赖;周鸿祎支持AI发展但反对构建超级智能。更多详情,访问通义平台。
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
基于人体姿势估计的舞蹈检测(AI Dance based on Human Pose Estimation)
85 0
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
90 1
|
5月前
|
人工智能 搜索推荐 数据处理
苹果发布最新人工智能系统——Apple Intelligence,重新定义AI
Apple推出Apple Intelligence,集成于iOS 18等系统中,提供情境感知的个性化服务。新功能包括跨应用操作、屏幕阅读、写作辅助、图像生成及邮件管理。Siri升级,支持语言理解与生成。未来计划扩展多语言支持、集成第三方模型。与OpenAI合作将ChatGPT融入Siri。
130 5
|
6月前
|
数据采集 人工智能 监控
Spring Boot项目中集成Spring AI(也就是Spring Artificial Intelligence)
Spring Boot项目中集成Spring AI(也就是Spring Artificial Intelligence)
1227 1
|
6月前
|
人工智能 运维 搜索推荐
《百炼成金-大金融模型新篇章》––07.问题5:“杀手级通用大模型vs百花齐放专属大模型”,企业级AI应用的价值自证?
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
127 1
|
5月前
|
传感器 人工智能 搜索推荐
苹果首款搭载Apple Intelligence功能的新品类曝光——AI桌面机器人
苹果研发的AI桌面机器人,融合360度机械臂与显示屏,预示智能家居新篇章。具备生物识别、实时交互与HomeKit控制,挑战已有的智能音箱市场。面对竞争,苹果依赖创新与品牌影响力,有望引领潮流,开启更智能、个性化的家庭体验。
90 0