PostgreSQL 老湿机图解平安科技遇到的垃圾回收"坑"

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS SQL Server,基础系列 2核4GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 背景 从海安那里反馈的一个问题,是平安科技在使用PostgreSQL的过程中,遇到的一个有些"不可思议"的问题。 一张经常被更新的表,通过主键查询这张表的记录时,发现需要扫描异常多的数据块。 其实原因有2。 .1. 长事务有关,我在很多文章都提到过,PG在垃圾回收时,只判断垃圾版

背景

近日收到 平安科技 海安童鞋 那里反馈的一个问题,在生产环境使用PostgreSQL的过程中,遇到的一个有点"不可思议"的问题。

一张经常被更新的表,通过主键查询这张表的记录时,发现需要扫描异常多的数据块。

本文将为你详细剖析这个问题,同时给出规避的方法,以及内核改造的方法。

文中还涉及到索引的结构解说,仔细阅读定有收获。

原因分析

.1. 和长事务有关,我在很多文章都提到过,PG在垃圾回收时,只判断垃圾版本是否是当前数据库中最老的事务之前的,如果是之后产生的,则不回收。

所以当数据库存在长事务时,同时被访问的记录被多次变更,造成一些垃圾版本没有回收。
screenshot

.2. PG的索引没有版本信息,所以必须要访问heap tuple获取版本。
screenshot

复现方法

测试表

postgres=# create unlogged table test03 (id int primary key, info text);

频繁更新100条记录

$ vi test.sql
\setrandom id 1 100
insert into test03 values(:id, repeat(md5(random()::text), 1000)) on conflict on constraint test03_pkey do update set info=excluded.info;

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 48 -j 48 -T 10000000

开启长事务,啥也不干

postgres=# begin;
BEGIN
postgres=# select txid_current();
 txid_current 
--------------
   3474642778
(1 row)

经过一段时间的更新,发现需要访问很多数据块了。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test03 where id=2;
                                                         QUERY PLAN                                                          
-----------------------------------------------------------------------------------------------------------------------------
 Index Scan using test03_pkey on public.test03  (cost=0.42..8.44 rows=1 width=417) (actual time=0.661..4.440 rows=1 loops=1)
   Output: id, info
   Index Cond: (test03.id = 2)
   Buffers: shared hit=1753
 Planning time: 0.104 ms
 Execution time: 4.468 ms
(6 rows)

观察访问很多的块是heap块

postgres=# set enable_indexscan=off;
SET

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test03 where id=2;
                                                      QUERY PLAN                                                       
-----------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.test03  (cost=4.43..8.44 rows=1 width=416) (actual time=5.818..5.819 rows=1 loops=1)
   Output: id, info
   Recheck Cond: (test03.id = 2)
   Heap Blocks: exact=1986
   Buffers: shared hit=1996
   ->  Bitmap Index Scan on test03_pkey  (cost=0.00..4.43 rows=1 width=0) (actual time=0.418..0.418 rows=1986 loops=1)
         Index Cond: (test03.id = 2)
         Buffers: shared hit=10
 Planning time: 0.200 ms
 Execution time: 5.851 ms
(10 rows)

提交长事务前,使用vacuum verbose可以看到无法回收这些持续产生的垃圾page(包括index和heap的page)。

提交长事务

postgres=# end;
COMMIT

等待autovacuum进程回收垃圾,delete half index page。
访问的数据块数量下降了。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test03 where id=2;
                                                     QUERY PLAN                                                     
--------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.test03  (cost=4.43..8.45 rows=1 width=417) (actual time=0.113..0.118 rows=1 loops=1)
   Output: id, info
   Recheck Cond: (test03.id = 2)
   Heap Blocks: exact=3
   Buffers: shared hit=14
   ->  Bitmap Index Scan on test03_pkey  (cost=0.00..4.43 rows=1 width=0) (actual time=0.067..0.067 rows=3 loops=1)
         Index Cond: (test03.id = 2)
         Buffers: shared hit=11
 Planning time: 0.101 ms
 Execution time: 0.148 ms
(10 rows)

深入分析

使用pageinspect观察测试过程中索引页的内容变化

创建extension

postgres=# create extension pageinspect;

开启长事务

postgres=# begin;
BEGIN
postgres=# select txid_current();

测试60秒更新

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 48 -j 48 -T 60

观察需要扫描多少数据块

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test03 where id=1;
                                                          QUERY PLAN                                                          
------------------------------------------------------------------------------------------------------------------------------
 Index Scan using test03_pkey on public.test03  (cost=0.43..8.45 rows=1 width=417) (actual time=0.052..15.738 rows=1 loops=1)
   Output: id, info
   Index Cond: (test03.id = 1)
   Buffers: shared hit=2663
 Planning time: 0.572 ms
 Execution time: 15.790 ms
(6 rows)

postgres=# set enable_indexscan=off;
SET

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test03 where id=1;
                                                      QUERY PLAN                                                       
-----------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.test03  (cost=4.44..8.45 rows=1 width=417) (actual time=6.138..6.139 rows=1 loops=1)
   Output: id, info
   Recheck Cond: (test03.id = 1)
   Heap Blocks: exact=2651
   Buffers: shared hit=2663
   ->  Bitmap Index Scan on test03_pkey  (cost=0.00..4.44 rows=1 width=0) (actual time=0.585..0.585 rows=2651 loops=1)
         Index Cond: (test03.id = 1)
         Buffers: shared hit=12
 Planning time: 0.093 ms
 Execution time: 6.218 ms
(10 rows)

观察索引页, root=412, 层级=2

postgres=# select * from bt_metap('test03_pkey');
 magic  | version | root | level | fastroot | fastlevel 
--------+---------+------+-------+----------+-----------
 340322 |       2 |  412 |     2 |      412 |         2
(1 row)

查看root页内容

postgres=# select * from bt_page_stats('test03_pkey',412);
 blkno | type | live_items | dead_items | avg_item_size | page_size | free_size | btpo_prev | btpo_next | btpo | btpo_flags 
-------+------+------------+------------+---------------+-----------+-----------+-----------+-----------+------+------------
   412 | r    |          3 |          0 |            13 |      8192 |      8096 |         0 |         0 |    2 |          2
(1 row)

postgres=# select * from bt_page_items('test03_pkey',412);
 itemoffset |  ctid   | itemlen | nulls | vars |          data           
------------+---------+---------+-------+------+-------------------------
          1 | (3,1)   |       8 | f     | f    | 
          2 | (584,1) |      16 | f     | f    | 21 00 00 00 00 00 00 00
          3 | (411,1) |      16 | f     | f    | 46 00 00 00 00 00 00 00
(3 rows)

查看最左branch 页内容

postgres=# select * from bt_page_items('test03_pkey',3);
 itemoffset |  ctid   | itemlen | nulls | vars |          data           
------------+---------+---------+-------+------+-------------------------
          1 | (58,1)  |      16 | f     | f    | 21 00 00 00 00 00 00 00
          2 | (1,1)   |       8 | f     | f    | 
          3 | (937,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          4 | (767,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          5 | (666,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          6 | (572,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          7 | (478,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          8 | (395,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          9 | (307,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
         10 | (173,1) |      16 | f     | f    | 01 00 00 00 00 00 00 00
         11 | (99,1)  |      16 | f     | f    | 01 00 00 00 00 00 00 00
         12 | (951,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         13 | (867,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         14 | (773,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         15 | (660,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         16 | (564,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         17 | (496,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         18 | (413,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         19 | (319,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         20 | (204,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         21 | (151,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
         22 | (64,1)  |      16 | f     | f    | 02 00 00 00 00 00 00 00
         23 | (865,1) |      16 | f     | f    | 03 00 00 00 00 00 00 00
         24 | (777,1) |      16 | f     | f    | 03 00 00 00 00 00 00 00

查看包含最小值的最左叶子节点内容

postgres=# select * from bt_page_items('test03_pkey',1);
 itemoffset |    ctid    | itemlen | nulls | vars |          data           
------------+------------+---------+-------+------+-------------------------
          1 | (57342,14) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          2 | (71195,14) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          3 | (71171,12) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          4 | (71185,1)  |      16 | f     | f    | 01 00 00 00 00 00 00 00
          5 | (71150,17) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          6 | (71143,1)  |      16 | f     | f    | 01 00 00 00 00 00 00 00
......

查看包含最小值的最右叶子节点内容

postgres=# select * from bt_page_items('test03_pkey',99);
 itemoffset |    ctid    | itemlen | nulls | vars |          data           
------------+------------+---------+-------+------+-------------------------
          1 | (66214,10) |      16 | f     | f    | 02 00 00 00 00 00 00 00
          2 | (12047,15) |      16 | f     | f    | 01 00 00 00 00 00 00 00
......
         40 | (11052,15) |      16 | f     | f    | 01 00 00 00 00 00 00 00
         41 | (11009,6)  |      16 | f     | f    | 01 00 00 00 00 00 00 00
         42 | (11021,6)  |      16 | f     | f    | 01 00 00 00 00 00 00 00
         43 | (71209,3)  |      16 | f     | f    | 02 00 00 00 00 00 00 00
         44 | (69951,1)  |      16 | f     | f    | 02 00 00 00 00 00 00 00

查看这些叶子索引页包含data='01 00 00 00 00 00 00 00'的item有多少条,可以对应到需要扫描多少heap page

select count(distinct substring(ctid::text, 1, "position"(ctid::text, ','))) from (
select * from bt_page_items('test03_pkey',1) 
union all
select * from bt_page_items('test03_pkey',937) 
union all
select * from bt_page_items('test03_pkey',767) 
union all
select * from bt_page_items('test03_pkey',666) 
union all
select * from bt_page_items('test03_pkey',572) 
union all
select * from bt_page_items('test03_pkey',478) 
union all
select * from bt_page_items('test03_pkey',395) 
union all
select * from bt_page_items('test03_pkey',307) 
union all
select * from bt_page_items('test03_pkey',173) 
union all
select * from bt_page_items('test03_pkey',99) 
union all
select * from bt_page_items('test03_pkey',951)
) t 
where data='01 00 00 00 00 00 00 00';

 count 
-------
  2652
(1 row)

2652与前面执行计划中看到的2651对应。

提交长事务

postgres=# end;
COMMIT

等待autovacuum结束

postgres=# select * from pg_stat_all_tables where relname='test03';
-[ RECORD 1 ]-------+------------------------------
relid               | 14156713
schemaname          | public
relname             | test03
seq_scan            | 39
seq_tup_read        | 5137822
idx_scan            | 3522865664
idx_tup_fetch       | 3521843178
n_tup_ins           | 1022487
n_tup_upd           | 3476465702
n_tup_del           | 22387
n_tup_hot_upd       | 3433472972
n_live_tup          | 100
n_dead_tup          | 0
n_mod_since_analyze | 0
last_vacuum         | 2016-07-15 00:03:53.909086+08
last_autovacuum     | 2016-07-15 00:32:04.177672+08
last_analyze        | 2016-07-15 00:03:53.909825+08
last_autoanalyze    | 2016-07-15 00:07:23.541629+08
vacuum_count        | 10
autovacuum_count    | 125
analyze_count       | 7
autoanalyze_count   | 99

观察现在需要扫描多少块

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from test03 where id=1;
                                                     QUERY PLAN                                                      
---------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.test03  (cost=40.40..44.41 rows=1 width=417) (actual time=0.026..0.027 rows=1 loops=1)
   Output: id, info
   Recheck Cond: (test03.id = 1)
   Heap Blocks: exact=1
   Buffers: shared hit=5
   ->  Bitmap Index Scan on test03_pkey  (cost=0.00..40.40 rows=1 width=0) (actual time=0.014..0.014 rows=1 loops=1)
         Index Cond: (test03.id = 1)
         Buffers: shared hit=4
 Planning time: 0.137 ms
 Execution time: 0.052 ms
(10 rows)

查看现在的索引页内容,half page已经remove掉了

postgres=# select count(distinct substring(ctid::text, 1, "position"(ctid::text, ','))) from (
select * from bt_page_items('test03_pkey',1) 
union all
select * from bt_page_items('test03_pkey',937) 
union all
select * from bt_page_items('test03_pkey',767) 
union all
select * from bt_page_items('test03_pkey',666) 
union all
select * from bt_page_items('test03_pkey',572) 
union all
select * from bt_page_items('test03_pkey',478) 
union all
select * from bt_page_items('test03_pkey',395) 
union all
select * from bt_page_items('test03_pkey',307) 
union all
select * from bt_page_items('test03_pkey',173) 
union all
select * from bt_page_items('test03_pkey',99) 
union all
select * from bt_page_items('test03_pkey',951)
) t 
where data='01 00 00 00 00 00 00 00' ;
NOTICE:  page is deleted
NOTICE:  page is deleted
NOTICE:  page is deleted
NOTICE:  page is deleted
NOTICE:  page is deleted
NOTICE:  page is deleted
NOTICE:  page is deleted
NOTICE:  page is deleted
NOTICE:  page is deleted
-[ RECORD 1 ]
count | 2

再观察索引页内容,已经被autovacuum收缩了

postgres=# select * from bt_metap('test03_pkey');
 magic  | version | root | level | fastroot | fastlevel 
--------+---------+------+-------+----------+-----------
 340322 |       2 |  412 |     2 |      412 |         2
(1 row)

postgres=# select * from bt_page_items('test03_pkey',412);
 itemoffset |  ctid   | itemlen | nulls | vars |          data           
------------+---------+---------+-------+------+-------------------------
          1 | (3,1)   |       8 | f     | f    | 
          2 | (584,1) |      16 | f     | f    | 21 00 00 00 00 00 00 00
          3 | (411,1) |      16 | f     | f    | 46 00 00 00 00 00 00 00
(3 rows)

postgres=# select * from bt_page_items('test03_pkey',3);
 itemoffset |  ctid   | itemlen | nulls | vars |          data           
------------+---------+---------+-------+------+-------------------------
          1 | (58,1)  |      16 | f     | f    | 21 00 00 00 00 00 00 00
          2 | (1,1)   |       8 | f     | f    | 
          3 | (99,1)  |      16 | f     | f    | 01 00 00 00 00 00 00 00
          4 | (865,1) |      16 | f     | f    | 02 00 00 00 00 00 00 00
          5 | (844,1) |      16 | f     | f    | 03 00 00 00 00 00 00 00
          6 | (849,1) |      16 | f     | f    | 04 00 00 00 00 00 00 00
          7 | (18,1)  |      16 | f     | f    | 05 00 00 00 00 00 00 00
          8 | (95,1)  |      16 | f     | f    | 06 00 00 00 00 00 00 00
          9 | (63,1)  |      16 | f     | f    | 07 00 00 00 00 00 00 00
         10 | (34,1)  |      16 | f     | f    | 08 00 00 00 00 00 00 00
         11 | (851,1) |      16 | f     | f    | 09 00 00 00 00 00 00 00
         12 | (10,1)  |      16 | f     | f    | 0a 00 00 00 00 00 00 00
         13 | (71,1)  |      16 | f     | f    | 0b 00 00 00 00 00 00 00
         14 | (774,1) |      16 | f     | f    | 0c 00 00 00 00 00 00 00
         15 | (213,1) |      16 | f     | f    | 0d 00 00 00 00 00 00 00
         16 | (881,1) |      16 | f     | f    | 0e 00 00 00 00 00 00 00
         17 | (837,1) |      16 | f     | f    | 0f 00 00 00 00 00 00 00
         18 | (100,1) |      16 | f     | f    | 10 00 00 00 00 00 00 00
         19 | (872,1) |      16 | f     | f    | 11 00 00 00 00 00 00 00
         20 | (32,1)  |      16 | f     | f    | 12 00 00 00 00 00 00 00
         21 | (65,1)  |      16 | f     | f    | 13 00 00 00 00 00 00 00
         22 | (870,1) |      16 | f     | f    | 14 00 00 00 00 00 00 00
         23 | (841,1) |      16 | f     | f    | 15 00 00 00 00 00 00 00
         24 | (850,1) |      16 | f     | f    | 16 00 00 00 00 00 00 00
         25 | (30,1)  |      16 | f     | f    | 17 00 00 00 00 00 00 00
         26 | (91,1)  |      16 | f     | f    | 18 00 00 00 00 00 00 00
         27 | (829,1) |      16 | f     | f    | 19 00 00 00 00 00 00 00
         28 | (16,1)  |      16 | f     | f    | 1a 00 00 00 00 00 00 00
         29 | (784,1) |      16 | f     | f    | 1b 00 00 00 00 00 00 00
         30 | (31,1)  |      16 | f     | f    | 1c 00 00 00 00 00 00 00
         31 | (88,1)  |      16 | f     | f    | 1d 00 00 00 00 00 00 00
         32 | (48,1)  |      16 | f     | f    | 1e 00 00 00 00 00 00 00
         33 | (822,1) |      16 | f     | f    | 1f 00 00 00 00 00 00 00
         34 | (817,1) |      16 | f     | f    | 20 00 00 00 00 00 00 00
         35 | (109,1) |      16 | f     | f    | 21 00 00 00 00 00 00 00
(35 rows)

postgres=# select * from bt_page_items('test03_pkey',1);
 itemoffset |    ctid    | itemlen | nulls | vars |          data           
------------+------------+---------+-------+------+-------------------------
          1 | (57342,14) |      16 | f     | f    | 01 00 00 00 00 00 00 00
          2 | (71195,14) |      16 | f     | f    | 01 00 00 00 00 00 00 00
(2 rows)

postgres=# select * from bt_page_items('test03_pkey',99);
 itemoffset |    ctid    | itemlen | nulls | vars |          data           
------------+------------+---------+-------+------+-------------------------
          1 | (66214,10) |      16 | f     | f    | 02 00 00 00 00 00 00 00
          2 | (71209,3)  |      16 | f     | f    | 02 00 00 00 00 00 00 00
(2 rows)

相关源码

src/backend/access/nbtree/nbtpage.c

/*
 * Unlink a page in a branch of half-dead pages from its siblings.
 *
 * If the leaf page still has a downlink pointing to it, unlinks the highest
 * parent in the to-be-deleted branch instead of the leaf page.  To get rid
 * of the whole branch, including the leaf page itself, iterate until the
 * leaf page is deleted.
 *
 * Returns 'false' if the page could not be unlinked (shouldn't happen).
 * If the (new) right sibling of the page is empty, *rightsib_empty is set
 * to true.
 */
static bool
_bt_unlink_halfdead_page(Relation rel, Buffer leafbuf, bool *rightsib_empty)
{
...
        /*
         * Mark the page itself deleted.  It can be recycled when all current
         * transactions are gone.  Storing GetTopTransactionId() would work, but
         * we're in VACUUM and would not otherwise have an XID.  Having already
         * updated links to the target, ReadNewTransactionId() suffices as an
         * upper bound.  Any scan having retained a now-stale link is advertising
         * in its PGXACT an xmin less than or equal to the value we read here.  It
         * will continue to do so, holding back RecentGlobalXmin, for the duration
         * of that scan.
         */
        page = BufferGetPage(buf);
        opaque = (BTPageOpaque) PageGetSpecialPointer(page);
        opaque->btpo_flags &= ~BTP_HALF_DEAD;
        opaque->btpo_flags |= BTP_DELETED;
        opaque->btpo.xact = ReadNewTransactionId();
...

contrib/pageinspect/btreefuncs.c

                if (P_ISDELETED(opaque))
                        elog(NOTICE, "page is deleted");

参考

1. b-tree原理
https://yq.aliyun.com/articles/54437

优化手段

1. 频繁更新的表,数据库的优化手段
1.1 监控长事务,绝对控制长事务

1.2 缩小autovacuum naptime (to 1s) ,

  增加autovacuum work (to 10),     
  设置autovacuum delay=0,     
  增大autovacuum work memory (to 512MB or bigger),     
  将经常变更的表和索引放到好的iops的设备上 。       
  不要小看这几个参数,非常的关键。    

1.3 如果事务释放并且表上面已经出发了vacuum后,还是要查很多的PAGE,说明index page没有delete和收缩,可能是index page没有达到compact的要求,如果遇到这种情况,需要reindex。

2. PostgreSQL 9.6通过快照过旧彻底解决这个长事务引发的坑爹问题。
9.6 vacuum的改进如图
screenshot

如何判断snapshot too old如图
screenshot

https://www.postgresql.org/docs/9.6/static/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-ASYNC-BEHAVIOR

3. 9.6的垃圾回收机制也还有改进的空间,做到更细粒度的版本控制,改进方法以前分享过,在事务列表中增加记录事务隔离级别,通过隔离级别判断需要保留的版本,而不是简单的通过最老事务来判断需要保留的垃圾版本。

祝大家玩得开心,欢迎随时来 阿里云促膝长谈 业务需求 ,恭候光临。

阿里云的小伙伴们加油,努力做 最贴地气的云数据库

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
存储 算法 关系型数据库
PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem
PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem
3516 1
|
存储 弹性计算 算法
PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem
标签 PostgreSQL , 垃圾回收 , 索引扫描 , 内存 背景 夜谈PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem。 http://www.postgres.cn/v2/news/viewone/1/398 https://rhaas.blogspot.com/2019/01/how-much
2632 0
|
Java 关系型数据库 PostgreSQL
PostgreSQL物理"备库"的哪些操作或配置,可能影响"主库"的性能、垃圾回收、IO波动
标签 PostgreSQL , 物理复制 , 垃圾回收 , vacuum_defer_cleanup_age , hot_standby_feedback , max_standby_archive_delay , max_standby_streaming_delay 背景 PostgreSQL 物理备库的哪些配置,或者哪些操作,可能影响到主库呢? 首先,简单介绍一下PostgreSQL的物理备库,物理备库就是基于PostgreSQL WAL流式复制,实时恢复的备库。
4459 0
|
关系型数据库 Java PostgreSQL
|
2月前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
73 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
3月前
|
监控 算法 Java
深入理解Java中的垃圾回收机制在Java编程中,垃圾回收(Garbage Collection, GC)是一个核心概念,它自动管理内存,帮助开发者避免内存泄漏和溢出问题。本文将探讨Java中的垃圾回收机制,包括其基本原理、不同类型的垃圾收集器以及如何调优垃圾回收性能。通过深入浅出的方式,让读者对Java的垃圾回收有一个全面的认识。
本文详细介绍了Java中的垃圾回收机制,从基本原理到不同类型垃圾收集器的工作原理,再到实际调优策略。通过通俗易懂的语言和条理清晰的解释,帮助读者更好地理解和应用Java的垃圾回收技术,从而编写出更高效、稳定的Java应用程序。
|
2月前
|
存储 Java PHP
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
【JVM】垃圾回收机制(GC)之引用计数和可达性分析
73 0
|
3月前
|
监控 算法 Java
深入理解Java中的垃圾回收机制(GC)
本文将探讨Java的自动内存管理核心——垃圾回收机制。通过详细解析标记-清除算法、复制算法和标记-整理算法等常用垃圾回收算法,以及CMS、G1等常见垃圾回收器,帮助读者更好地理解Java应用的性能优化和内存管理。同时,探讨分代收集、分区收集等策略在实际项目中的应用。结语部分总结了垃圾回收机制在Java开发中的重要性,并展望了未来可能的发展。
74 0
|
4月前
|
缓存 监控 Java
"Java垃圾回收太耗时?阿里HBase GC优化秘籍大公开,让你的应用性能飙升90%!"
【8月更文挑战第17天】阿里巴巴在HBase实践中成功将Java垃圾回收(GC)时间降低90%。通过选用G1垃圾回收器、精细调整JVM参数(如设置堆大小、目标停顿时间等)、优化代码减少内存分配(如使用对象池和缓存),并利用监控工具分析GC行为,有效缓解了高并发大数据场景下的性能瓶颈,极大提升了系统运行效率。
96 4

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版