【JVM】垃圾回收机制(GC)之引用计数和可达性分析

简介: 【JVM】垃圾回收机制(GC)之引用计数和可达性分析

1. 引用计数

这种思想方法,并没有在 JVM 中使用,但是广泛应用于其他主流语言的垃圾回收机制中(PythonPHP)。

《深入理解 Java 虚拟机》中谈到了引用计数,就导致有些面试官还是会问

给每个对象安排一个额外的空间,空间里要保存当前这个对象有几个引用

Test a = new Test();
Test b = a;
a = null;
b = null;

  • new 出对象的时候,就在堆上开辟了一块空间,并且在前面额外有一块空间用来存储引用计数
  • 当把对象的地址给到栈上的局部变量的时候,这个引用就指向了这个对象,引用计数就变成了 1
  • 当引用 b 同样指向这个对象的时候,引用计数就变成了 2
  • 当引用 a 的值由对象的地址变为 null 的时候,a 引用就销毁了,引用计数变为 1
  • 当引用 b 的值由对象的地址变为 null 的时候,b 引用也销毁了,引用计数变为 0

此时垃圾回收机制发现对象的引用计数为 0,说明这个对象就可以释放掉了

  • 引用计数为 0,就说明这个对象是垃圾了
  • 有专门的线程,去获取到当前每个对象的引用计数的情况

存在问题

引用计数机制,是一个简单有效的机制,存在两个关键问题

1. 消耗额外的内存空间

要给每个对象都安排一个计数器,就算计数器按照两个字节算,整个程序中对象数目很多,总的消耗空间也会非常多;尤其是如果每个对象体积比较小,假设每个对象四个字节,计数器消耗的空间,就达到了对象空间的一半

类似于花钱买 100 平的房子,实际上你房子的使用面积也就 70 多平(非常难受)

2. “循环引用“问题

引用计数可能会产生“循环引用的问题”。此时,引用计数就无法正确工作了

class Test {
  Test t;
}
Test a = new Test();
Test b = new Test();
a.t = b;
b.t = a;
a = null;
b = null;

  • Test 对象里面有一个成员变量 t,他的类型也是 Test,也就是说它也可以引用一个对象
  • a.t = b的意思是:将a引用对象中的t成员变量的值赋为b的引用
  • 所以此时第二个引用对象就会有两个引用指向,一个是 a,一个是 a.t
  • 所以第二个引用对象的引用计数就会变成 2
  • 同理,b.t=a 的结果就是第一个引用计数也会变成 2

  • ab 都被赋值为 0 之后,两个对象的引用计数都变成了 1,但此时这两个对象都没法使用了(双方的引用指向都在对方那里,类似于“死锁”的情况)。由于引用计数不为 0,也没法被回收

2. 可达性分析(JVM 用的)

本质上是用“时间换空间”,相比于引用计数,需要小号更多的额外的时间。但是总体来说还是可控的,不会产生类似于“循环引用”这样的问题

在写代码的过程中,会定义很多的变量。比如,栈上的局部变量/方法区中的静态类型的变量/常量池引用的对象…

  • 就可以从这些变量作为起点出发,尝去进行“遍历”。
  • 所谓遍历就是会沿着这些变量中持有的引用类型的成员,再进一步的往下进行访问
  • 所有能被访问到的对象,自然就不是垃圾,剩下的遍历一圈也访问不到的对象,自然就是垃圾了

比如有如下代码:

class Node {
  char val;
  Node left;
  Node right;
}
Node buildTree() {
  Node a = new Node();
  Node b = new Node();
  Node c = new Node();
  Node d = new Node();
  Node e = new Node();
  Node f = new Node();
  Node g = new Node();
  
  a.right = b;
  a.left = c;
  b.left = d;
  b.right = e;
  e.left = g;
  c.right = f;
  
  return a;
)
Node root = buildTree();

虽然这个代码中,只有一个 root 这样的引用,但是实际上上述 7 个节点对象都是“可达”的

  • b == root. left;
  • c == root. right;
  • d == root. left. left;
  • 依此类推,上述的对象都能通过 . 的方式访问到
    JVM 中存在扫描线程,会不停地尝试对代码中已有的这些变量进行遍历,尽可能多的访问到对象

上述代码中,如果执行这个代码:root.right.right = null;

  • 就会导致 cf 之间断开了,此时 f 这个对象就被“孤立”了
  • 按照上述从 root 出发进行遍历的操作就也无法访问到 f 了,f 这个节点对象就称为“不可达
  • 如果 ac 之间断开了,此时 c 就不可达了。由于访问 f 必须通过 cc 不可达就导致 f 不可达。所以此时 cf 都是垃圾了
  • 如果 root=null,此时整棵树都是垃圾了

JVM 自身知道一共有哪些对象,通过可达性分析的遍历,把可达的对象都标记出来了,剩下的自然就是不可达的了


相关文章
|
25天前
|
监控 Java Unix
6个Java 工具,轻松分析定位 JVM 问题 !
本文介绍了如何使用 JDK 自带工具查看和分析 JVM 的运行情况。通过编写一段测试代码(启动 10 个死循环线程,分配大量内存),结合常用工具如 `jps`、`jinfo`、`jstat`、`jstack`、`jvisualvm` 和 `jcmd` 等,详细展示了 JVM 参数配置、内存使用、线程状态及 GC 情况的监控方法。同时指出了一些常见问题,例如参数设置错误导致的内存异常,并通过实例说明了如何排查和解决。最后附上了官方文档链接,方便进一步学习。
|
2月前
|
Prometheus 监控 算法
CMS圣经:CMS垃圾回收器的原理、调优,多标+漏标+浮动垃圾 分析与 研究
本文介绍了CMS(Concurrent Mark-Sweep)垃圾回收器的工作原理、优缺点及常见问题,并通过具体案例分析了其优化策略。重点探讨了CMS的各个阶段,包括标记、并发清理和重标记
CMS圣经:CMS垃圾回收器的原理、调优,多标+漏标+浮动垃圾 分析与 研究
|
2月前
|
存储 监控 Java
JVM实战—8.如何分析jstat统计来定位GC
本文详细介绍了使用jstat、jmap和jhat等工具分析JVM运行状况的方法,以及如何合理优化JVM性能。内容涵盖新生代与老年代对象增长速率、Young GC和Full GC的触发频率及耗时等关键指标的分析。通过模拟BI系统和计算系统的案例,展示了如何根据实际场景调整JVM参数以减少FGC频率,提升系统性能。最后汇总了常见问题及其解决方案,帮助开发者更好地理解和优化JVM运行状态。
JVM实战—8.如何分析jstat统计来定位GC
|
2月前
|
存储 算法 Java
G1原理—5.G1垃圾回收过程之Mixed GC
本文介绍了G1的Mixed GC垃圾回收过程,包括并发标记算法详解、三色标记法如何解决错标漏标问题、SATB如何解决错标漏标问题、Mixed GC的过程、选择CollectSet的算法
G1原理—5.G1垃圾回收过程之Mixed GC
|
2月前
|
存储 监控 架构师
ZGC圣经:ZGC垃圾回收器的原理、调优,ZGC 漏标的 分析与 研究
ZGC圣经:ZGC垃圾回收器的原理、调优,ZGC 漏标的 分析与 研究
|
2月前
|
存储 算法 Java
G1原理—6.G1垃圾回收过程之Full GC
本文详细探讨了G1垃圾回收器对Full GC(FGC)的优化处理,涵盖FGC的前置处理、整体流程及并行化改进。重点分析了传统FGC串行化的局限性以及G1通过Region分区和RSet机制实现并行标记的优势,包括任务窃取提升效率、跨分区压缩以生成空闲Region等技术细节。此外,文章还介绍了G1的新特性——字符串去重优化,通过判断char数组一致性减少重复字符串占用内存,从而提升内存使用效率。总结部分全面回顾了G1在FGC中的各项优化措施及其带来的性能改善。
G1原理—6.G1垃圾回收过程之Full GC
|
2月前
|
存储 算法 Java
G1原理—4.G1垃圾回收的过程之Young GC
本文详细解析了G1垃圾回收器中YGC(Young Generation Collection)的完整流程,包括并行与串行处理阶段。内容涵盖YGC相关参数设置、YGC与Mixed GC及FGC的关系、新生代垃圾回收的具体步骤(如标记存活对象、复制到Survivor区、动态调整Region数量等),以及并行阶段的多线程操作和串行阶段的关键任务(如处理软引用、整理卡表、重构RSet)。
G1原理—4.G1垃圾回收的过程之Young GC
|
5月前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)
|
18天前
|
Arthas 监控 Java
Arthas memory(查看 JVM 内存信息)
Arthas memory(查看 JVM 内存信息)
48 6
|
2月前
|
存储 缓存 算法
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
198 29
JVM简介—1.Java内存区域