人工智能带动 嵌入式深度学习芯片激增

简介:

市场研究公司数据显示,2017年嵌入式AI芯片产业营收由2016年的800亿美元增长至创记录的1320亿美元,2018年将进一步增长至1500亿美元。

深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即模仿人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。近年来,其所取得的前所未有的突破掀起了人工智能新一轮的发展热潮。

最早的神经网络的思想起源于1943 年的 MCP人工神经元模型,当时是希望能够用计算机来模拟人的神经元反应的过程,但直到最近,它才真正让人工智能火起来。主要原因在于:算法的突破、数据量的激增和计算机能力/成本的下降。其中计算能力的提升的作为人工智能实现的物理基础,对人工智能发展的意义不言而喻。

深度神经网络的兴起,在过去几年里把风投的资金带回到了半导体领域。 EE Times最近公布的Silicon 60本榜单中,有7家致力于某种形式的神经网络芯片,其中2家公司鲜为人知:Cambricon Technologies(中国北京)和Mythic Inc.(美国德克萨斯州奥斯汀)。

“我们看到拥有新架构的初创公司正在激增。我自己也在关注着15-20家公司......过去10到15年,我们还没有看到哪一个细分领域有15家这么多的芯片公司出现。”企业家Chris Rowen这样表示,他离开了Cadence Design Systems,成立了一家名为Cognite Ventures的公司,专注于神经网络软件。

“在高端服务器训练方面,Nvidia是一个很难对付的竞争对手,因为它有很难撼动的软件地位,而且涉足智能手机市场那你肯定是疯了,因为你必须要擅长很多方面,但是在高端和低端智能手机市场你可能还有一些机会。”Rowen表示。

市场分析公司The Linley Group负责人Linley Gwennap表示,Nvidia最新的GPU(Volta)做得非常出色,Nvidia对其进行了调整,可对深度神经网络做速度训练。“但我当然不认为这是最好的设计,”Gwennap说。

Gwennap表示,Graphcore(英国布里斯托尔)和Cerebras(美国加州洛斯阿尔托)是训练芯片领域值得关注的两家初创公司,因为这两家公司筹集的资金最多,而且似乎拥有最好的团队。由Google前芯片设计师创立的初创公司Groq声称,它将在2018年推出一款推理芯片,在总体操作和每秒推论方面都会以4倍的优势击败竞争对手。

鉴于深度神经网络(DNN)的算法和应用还在不断演变之中,所以目前我们还不清楚深度神经网络最终会带来怎样的变化。但是迄今为止,深度神经网络在翻译文本、识别图像和语言方面取得的成功,让人们清楚地意识到,深度神经网络将重塑计算机设计,当半导体设计和制造方面发生着同样深刻颠覆的同时,这些变化逐渐开始带来影响。

相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
428 55
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
207 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
38 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
92 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
239 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
228 12
揭秘人工智能:深度学习的奥秘与实践
在本文中,我们将深入浅出地探索深度学习的神秘面纱。从基础概念到实际应用,你将获得一份简明扼要的指南,助你理解并运用这一前沿技术。我们避开复杂的数学公式和冗长的论述,以直观的方式呈现深度学习的核心原理和应用实例。无论你是技术新手还是有经验的开发者,这篇文章都将为你打开一扇通往人工智能新世界的大门。