在PostgreSQL中如何生成kmean算法的测试数据

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

生成Kmeans的测试数据。
例如每10000为界,生成10个种子,每个节点以100内的随机数相加,生成一组测试数据。

postgres=# create table test(id int, rand int);
CREATE TABLE

postgres=# insert into test select id*10000,trunc(random()*100 + id*10000) from generate_series(1,10) t(id), generate_series(1,100000) t1(rand);
INSERT 0 1000000

postgres=# select id,count(*) from test group by id;
   id   | count  
--------+--------
  10000 | 100000
  60000 | 100000
  40000 | 100000
  30000 | 100000
  90000 | 100000
  20000 | 100000
 100000 | 100000
  50000 | 100000
  70000 | 100000
  80000 | 100000
(10 rows)

直接使用kmeans分为10类,不设置种子的话,分得不是很准确。

postgres=# select k,id,count(*) from (select kmeans(array[rand], 10) over () k, id from test) t group by 1,2 order by 1,2;
 k |   id   | count  
---+--------+--------
 0 |  10000 | 100000
 0 |  20000 | 100000
 1 |  30000 |  49707
 2 |  30000 |  50293
 3 |  40000 | 100000
 4 |  50000 | 100000
 5 |  60000 | 100000
 6 |  70000 | 100000
 7 |  80000 |  49871
 8 |  80000 |  50129
 9 |  90000 | 100000
 9 | 100000 | 100000
(12 rows)

使用正确的种子后,分类精准。

postgres=# select k,id,count(*) from (select kmeans(array[rand], 10, array[10000,20000,30000,40000,50000,60000,70000,80000,90000,100000]) over () k, id from test) t group by 1,2 order by 1,2;
 k |   id   | count  
---+--------+--------
 0 |  10000 | 100000
 1 |  20000 | 100000
 2 |  30000 | 100000
 3 |  40000 | 100000
 4 |  50000 | 100000
 5 |  60000 | 100000
 6 |  70000 | 100000
 7 |  80000 | 100000
 8 |  90000 | 100000
 9 | 100000 | 100000
(10 rows)

参考
http://blog.163.com/digoal@126/blog/static/163877040201571745048121/
http://pgxn.org/dist/kmeans/

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
10天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
16天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
102 0
|
2月前
|
机器学习/深度学习 Dragonfly 人工智能
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
|
3月前
|
传感器 机器学习/深度学习 分布式计算
卡尔曼滤波的多传感器数据融合算法
卡尔曼滤波的多传感器数据融合算法
307 0
|
7天前
|
存储 监控 算法
企业电脑监控系统中基于 Go 语言的跳表结构设备数据索引算法研究
本文介绍基于Go语言的跳表算法在企业电脑监控系统中的应用,通过多层索引结构将数据查询、插入、删除操作优化至O(log n),显著提升海量设备数据管理效率,解决传统链表查询延迟问题,实现高效设备状态定位与异常筛选。
27 3
|
5月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
110 2
|
6月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
241 4
|
24天前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
22天前
|
存储 测试技术 API
数据驱动开发软件测试脚本
今天刚提交了我的新作《带着ChatGPT玩转软件开发》给出版社,在写作期间跟着ChatGPT学到许多新知识。下面分享数据驱动开发软件测试脚本。
28 0
|
29天前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多