Python-OpenCV学习(十一)分水岭算法进行图像分割

简介:
+关注继续查看

分水岭算法进行图像分割:
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
例子:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('basil.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# noise removal
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)

# sure background area
sure_bg = cv2.dilate(opening,kernel,iterations=3)

# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)

# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)

# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)

# Add one to all labels so that sure background is not 0, but 1
markers = markers+1

# Now, mark the region of unknown with zero
markers[unknown==255] = 0
markers = cv2.watershed(img,markers)
img[markers == -1] = [255,0,0]

plt.imshow(img)
plt.show()

结果:
1
先导入模块加载图像,图像转化为灰度图片:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('basil.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

设置一个阈值,将灰度图像分为两部分:黑色部分和白色部分:

ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

通过morphologyEx变化来去除噪声数据,是对图像进行膨胀之后再进行腐蚀操作提取图像特征:

kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)

得到大部分前景:
通过distanceTeansform来获取最有可能的前景区域,越是远离背景区域的边界越可能是前景,得到结果后用一个阈值来确定前景:

dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)

接下来确定前景和背景重叠部分:

sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg,sure_fg)

设定“栅栏”来阻止谁汇聚,通过connected-Components函数完成:

ret, markers = cv2.connectedComponents(sure_fg)

在背景区域上加一,将unknown区域设为0:

markers = markers+1

markers[unknown==255] = 0

最后通过watershed函数:

markers = cv2.watershed(img,markers)
img[markers == -1] = [255,0,0]
目录
相关文章
|
7天前
|
算法 搜索推荐 Shell
python技术面试题(十五)--算法
python技术面试题(十五)--算法
|
23天前
|
机器学习/深度学习 算法 TensorFlow
基于Python+DenseNet121算法模型实现一个图像分类识别系统案例
基于Python+DenseNet121算法模型实现一个图像分类识别系统案例
22 2
基于Python+DenseNet121算法模型实现一个图像分类识别系统案例
|
27天前
|
机器学习/深度学习 算法 Python
[python]最小传输时延(dijkstra算法)
简要介绍最小传输时延python解法和相关题目。
|
1月前
|
算法 数据挖掘 API
Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速
Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速
29 0
|
1月前
|
算法 数据挖掘 API
Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速
Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速
35 0
Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速
|
1月前
|
算法 数据可视化 数据库
Apriori关联算法讲解以及利用Python实现算法软件设计
Apriori关联算法讲解以及利用Python实现算法软件设计
44 1
Apriori关联算法讲解以及利用Python实现算法软件设计
|
1月前
|
算法 数据可视化 数据库
python粗糙集简约算法+可视化界面
python粗糙集简约算法+可视化界面
40 0
|
1月前
|
机器学习/深度学习 存储 算法
最邻近规则分类 KNN (K-Nearest Neighbor)算法及python实现
最邻近规则分类 KNN (K-Nearest Neighbor)算法及python实现
|
1月前
|
算法 Python
Python OJ题典型算法:字符型数据与ASCII码详解
本文介绍了字符型数据与ASCII码的相关知识,包括ASCII码的基本概念和原理,以及如何将字符转换为对应的ASCII码。同时,还提供了示例代码和解题技巧,帮助读者更好地理解和运用这些知识。
43 0
|
2月前
|
算法 Python
Python OJ题典型算法:最长公共子序列
本文介绍了动态规划算法在解决最长公共子序列问题中的应用。通过详细的解题思路和代码实现,展示了如何利用动态规划算法高效地求解最长公共子序列的长度。这些技巧和方法对于理解和掌握动态规划算法以及解决其他类似问题具有重要意义。
40 0
相关产品
机器翻译
推荐文章
更多