如何访问pcie整个4k的配置空间

简介: <span style="font-size:18px">目前用于访问PCIe配置空间寄存器的方法需要追溯到原始的PCI规范。为了发起PCI总线配置周期,Intel实现的PCI规范使用IO空间的CF8h和CFCh来分别作为索引和数据寄存器,这种方法可以访问所有PCI设备的255 bytes配置寄存器。Intel Chipsets目前仍然支持这种访问PCI配置空间的方法。</span> <
目前用于访问PCIe配置空间寄存器的方法需要追溯到原始的PCI规范。为了发起PCI总线配置周期,Intel实现的PCI规范使用IO空间的CF8h和CFCh来分别作为索引和数据寄存器,这种方法可以访问所有PCI设备的255 bytes配置寄存器。Intel Chipsets目前仍然支持这种访问PCI配置空间的方法。

    PCIe规范在PCI规范的基础上,将配置空间扩展到4K bytes,至于为什么扩展到4K,具体可以参考PCIe规范,这些功能都需要配置空间。原来的CF8/CFC方法仍然可以访问所有PCIe设备配置空间的头255 bytes,但是该方法访问不了剩下的(4K-255)配置空间。怎么办呢?Intel提供了另外一种PCIe配置空间访问方法。Intel Chipset通过将配置空间映射到内存地址空间,PCIe配置空间可以像对映射范围内的内存进行read/write一样来访问了。这种映射是由北桥芯片来完成的,但是不同芯片的映射方式也是不同的。

1、CF8h/CFCH Method

    Intel Chipsets使用IO空间的CF8h/CFCh地址来访问PCI设备的配置寄存器,该方法同样可以访问PCIe设备的头255配置寄存器。

Chipsets

    为了对已知PCI设备发起一个PCI总线配置周期,软件必须执行以下步骤:

  1. PCI设备的总线号必须被填写到IO地址CF8h的[23:16] bits

  2. PCI设备的设备号必须被填写到IO地址CF8h的[15:11] bits

  3. PCI设备的功能号必须被填写到IO地址CF8h的[10:8] bits

  4. 需要访问的寄存器双字地址必须被填写到IO地址CF8h的[7:2] bits

  5. CF8h的最高位为配置位,该位必须设置为1

  6. 对于写操作,将设备的特定信息组合成一个双字(4bytes)后,写到CFCh地址

  7. 对于读操作,将设备的特定信息组合成一个双字后,把数据从CFCh读回来

     

    当执行6或者7步骤时,相应的PCI配置read/write cycle被Created by Intel Chipset,并在需要时传递到整个系统。在步骤4配置需要读写的寄存器地址时,该空间只有6位,也就说只有64个地址可写,但是PCI配置空间不是256吗?别急,记得是双字地址,一个Dword=4 bytes,也就是说4 * 64 = 256,刚好,不是吗?

 

2、Memory Mapped Method

    PCIe规范为每个PCIe设备添加了更多的配置寄存器,空间为4K,尽管CF8h/CFCh方法仍然能够访问lower 255 bytes,但是必须提供另外一种方法来访问剩下的4K range寄存器。Intel的解决方案是使用了预留256MB内存地址空间,对这段内存的任何访问都会发起PCI 配置cycle。但是为什么是256MB???听我慢慢解释给大家听:犹豫4K的配置空间是directly mapped to memory的,那么PCIe规范必须保证所有的PCIe设备的配置空间占用不同的内存地址,按照PCIe规范,支持最多256个buses,每个Bus支持最多32个PCI devices,每个device支持最多8个function,也就是说:占用内存的最大值为:256 * 32 * 8 * 4K = 256MB。

    这段256MB的内存区将根据intel chipset的不同,可以映射到系统内存映射范围内的任何位置,一般北桥芯片都会有一个寄存器来指明PCI配置空间的内存映射地址,它叫PCIe Configuration Register Base Address Register (BAR),如下图:

PCIe

    当软件访问指定PCIe设备的配置寄存器时,必须正确计算该寄存器映射到内存的具体地址,那么怎么计算呢,参考上图我们可以知道,busNo=0,deviceNo=0,funcNo=0的地址刚好是BAR,一条总线占用的最大空间计算如下:

    SIZE_PER_BUS = 4K * 32 * 8 = 256K = 1M = 100000h

    SIZE_PER_DEVICE = 4K * 8 = 8000h

    SIZE_PER_FUNC = 4K = 1000h

    访问总线号为busNo,设备号为DevNo,功能号为funcNo的offset寄存器的计算公式是:

    Memory Address = PCIe Configuration Register Base Address Register (BAR)

                                    + busNo * SIZE_PER_BUS

                                    + devNo * SIZE_PER_DEVICE

                                    + funcNo * SIZE_PER_FUNC

                                    + offset

    For example, to access the following configuration register:
    • PCI Express Configuration Register F0000000h
    • Bus Number 15h
    • Device Number 00h
    • Function Number 05h
    • Register Offset 84h

Memory Address = F0000000h + 15h * 100000h + 00h * 8000h  + 05h * 1000h + 84h

                        = F1505084h

    现在我们可以从已知的busNo,devNo,funcNo和offset来计算映射后的内存地址,那么反过来,给定的内存地址,我们想知道这个地址的busNo, devNo, funcNo和offset信息,可以吗?当然可以,计算公式如下:

    busNo = (Memory Address - BAR) / SIZE_PER_BUS;

    devNo = (Memory Address - BAR - busNo * SIZE_PER_BUS) / SIZE_PER_DEVICE;

    funcNo = (Memory Address - BAR - busNo * SIZE_PER_BUS 

                    - devNo * SIZE_PER_DEVICE) / SIZE _PER_FUNC;

    offset = Memory Address - BAR - busNo * SIZE_PER_BUS - devNo * SIZE_PER_DEVICE

                    - funcNo * SIZE_PER_FUNC;

    又或offset = Memory Address & 0x0FFFh;(为什么是0x0FFFh?自己想想啦)

    想起来了么?因此PCIe的配置空间大小就是4K啊。

3、芯片组的异同

    上面说的BAR,也就是PCI配置空间寄存器映射到内存的基地址寄存器,在intel chipset中的实现方式也千差万别。在前期的intel chipset中,该寄存器被包含在芯片组(MCH ,GMCH)的内存控制器部分。

    另外,由于被PCIe配置空间占用的256M内存空间会屏蔽掉DRAM使用该段内存区,大部分的Intel Chipset允许BIOS来配置该空间大小,因此在实际应用中,一般就应用前面几个总线号,BIOS通过检测PCIe总线的扩展深度来动态设置该映射内存区的大小,比如PM965芯片组,如果配置软件检测系统使用不大于64的总线号,那么该软件将编程内存映射大小为64M,剩下的(256M-64M = 192M)留给DRAM。

4、PCIe配置空间的内存映射对32bit系统的影响

    由于PCIe配置空间占用了256M内存空间,而且该被占用空间对DRAM来说是不可用的,这意味着256M空间消失于系统内存,这在32bit系统中更为明显。

    比如,在32 bit WINxp中,理论上可以访问到的内存是4G,如果4G空间都被DRAM给占用,由于PCIe的存在,被PCIe占用的那部分内存空间对OS来说是不可用的,莫名的消失了最多256M内存,这也是大部分Intel Chipset允许BIOS来配置该空间大小的原因。

    在64 bit 系统中,不存在这个问题,因为系统可以访问超过4G的内存空间,Intel Chipset会包含控制逻辑把该PCIe的内存映射到above 4G,这样跟DRAM就没有冲突。在64bit系统中,不可能使用2的64次方的内存吧。哈哈,总会没有使用到的内存空间。

5、访问PCIe配置空间的C转换代码

//**********************************************************************
unsigned long PCIeBase = 0xF0000000UL;
unsigned long FinalAddress;
unsigned long Bus = 0;
unsigned long Device = 0;
unsigned long Function = 0;
unsigned long Register = 0;
//**********************************************************************
void Convert_to_Memory()
{
    FinalAddress = PCIeBase +
                        (Bus*0x100000UL) +
                        (Device*0x8000) +
                        (Function*0x1000) +
                        Register;
}
//**********************************************************************
void Convert_to_Register()
{
    Bus = (FinalAddress-PCIeBase) / (0x100000UL);
    Device = (FinalAddress-PCIeBase - (Bus*0x100000UL)) / (0x8000);
    Function = (FinalAddress-PCIeBase - (Bus*0x100000UL) -
    (Device*0x8000)) / (0x1000);
    Register = (FinalAddress) & (0x00000FFF)

}

目录
打赏
0
0
0
0
47
分享
相关文章
hi3531的pcie atu资源重映射
<p>1. 设置ATU 区域号寄存器为需要配置的地址转换区编号。<br> 2. 设置ATU Region Lower Base Address Register 和ATU Region Upper Base Address<br> Register。(在此区域内的目标地址将由区域号寄存器所在的ATU 转换)<br> 3. 设置ATU Region Limit Address Regi
2795 0
SV39多级页表的硬件机制
【10月更文挑战第26天】SV39多级页表机制包括三级页表结构,每个页表项64位,通过SATP寄存器控制地址转换。地址转换过程涉及三级页表查找,最终生成物理地址。页表项包含有效位和访问权限位等标志,用于内存管理和访问控制。物理页帧的分配和回收确保内存的有效利用。
存储器管理-动态分区分配算法
存储器管理-动态分区分配算法
274 0
METSO DPU-MR 映射工具寻址的最小功能单元
METSO DPU-MR 映射工具寻址的最小功能单元
161 0
METSO  DPU-MR 映射工具寻址的最小功能单元
RK3399平台开发系列讲解(高速设备驱动篇)6.54、PCIe对PCI配置空间的扩展
RK3399平台开发系列讲解(高速设备驱动篇)6.54、PCIe对PCI配置空间的扩展
388 0
RK3399平台开发系列讲解(高速设备驱动篇)6.54、PCIe对PCI配置空间的扩展
浅析PCI配置空间
每个Function都有一个大小为4KB的configuration space。在系统上电的过程中,在枚举整个PCI Bus之后,就会将所有的BDF的configuration space读到Host内存中。在Host内存中有一个大小256MB的Memory Block, 专门用来存放所有的configuration space.
PCI配置空间简介
一、PCI配置空间简介 PCI有三个相互独立的物理地址空间:设备存储器地址空间、I/O地址空间和配置空间。配置空间是PCI所特有的一个物理空间。由于PCI支持设备即插即用,所以PCI设备不占用固定的内存地址空间或I/O地址空间,而是由操作系统决定其映射的基址。
3227 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等