初学Scala(1): Scala实现Hash Join

简介:

最近看了些Scala相关的内容,写了个简单的hash join。

初步实现

jion过程

  1. 从数据源读取两个List[List[Any]](),我把所有的操作都放到List容器里进行
  2. 将两份数据集,hash到自己写的简单的SimpleHashTable里,每次put进去的时候会返回一个Int值,用于记录两份数据占据的bucket number集合
  3. 由于两份数据都是基于同一个hash方法进行hash的,join具体发生在两个hashTable对应的bucket之间
  4. 遍历需要进行join的buckets,每对bucket之间的join回归到最基本的二层遍历
几点说明

  1. 整个过程一共两个文件,SimpleHashTable.scala和HashJoin.scala
  2. 输入是两个二维的List,输出是一个二维List,支持的是单个键的inner join
  3. 测试速度:两个10000大小的20个字段的宽表进行hash join,大约0.4s
  4. HashTable的M值可以针对数据集大小自己定制,尽量让数据集在buckets里打散

可以改进的点有很多,这个hash join还是相当简单的,我比较依赖于foldLeft和map方法,体会到Scala编程代码量很少,用起来很舒服,很强大。

class SimpleHashTable {
  
  val M = 991
  
  val container = new Array[List[Any]](M)

  for (i <- 0 to M-1) {
    container(i) = List[Any]()
  }

  def hash(key: String): Int = (key.hashCode() & 0x7fffffff) % M

  def put(key: String, value: List[Any]): Int = { // return the hash number
    val indice = hash(key)
    container(indice) = value :: container(indice)
    indice
  }
  
  def get(indice: Int): List[Any] = container(indice) 

  def get(key: String): List[Any] = get(hash(key))

  def dataset() = container

}


class HashJoin(list1: List[List[Any]], list2: List[List[Any]]) {

  val _list1 = list1
  val _list2 = list2
  
  def innerHashJion(col: Int): List[Any] = {
    val start = System.currentTimeMillis()
    var keys1 = Set[Int]()
    var keys2 = Set[Int]()

    val sht1 = _list1.par.foldLeft(new SimpleHashTable) { (sht, list) =>
      val i = sht.put(list(col).toString, list)
      keys1 = keys1 + i
      sht
    }
    
    val sht2 = _list2.par.foldLeft(new SimpleHashTable) { (sht, list) =>
      val i = sht.put(list(col).toString, list)
      keys2 = keys2 + i
      sht
    }
    val end = System.currentTimeMillis()
    println("Hash took: " + (end-start) + "ms")
    getJointRecords((keys1&keys2).toArray, sht1, sht2, col)
  }

  def getJointRecords(inds: Array[Int], sht1: SimpleHashTable, sht2: SimpleHashTable, col: Int): List[Any] = {
    println("joint-keys: " + inds.size)
    var ret = scala.collection.immutable.List[Any]()
    inds.par.foreach(ind => { 
      println(Thread.currentThread)
      sht1.get(ind).map(record1 => {
        sht2.get(ind).map(record2 => {
          val r1 = record1.asInstanceOf[List[Any]]
          val r2 = record2.asInstanceOf[List[Any]]
          if (r1(col) == r2(col)) ret = (r1 ::: r2) :: ret
        })
      })
    })
    ret
  }

}

测试可以使用下面单例:

object HashJoinTest {
  def main(args: Array[String]): Unit = {
    test()
  }

  def test(): Unit = {
    val c1 = List(111, "asfd", 23)
    val c11 = List(111, "asf", 231)
    val c2 = List(333, "e",    1)
    val c3 = List(222, "ewr",  80)

    val t1 = List(111, "e",    40)
    val t11 = List(111, "fge", 30)
    val t2 = List(333, "asfd", 80)
    val t3 = List(444, "e",    1)

    val list1 = List(c1, c11, c2, c3)
    val list2 = List(t1, t11, t2, t3)
    
    val hj = new HashJoin(list1, list2)
    val ret = hj.innerHashJion(2)
    for (i <- (0 to 1)) println(ret(i))
  }
}


优化

上面的这种实现,在join结果集并发往同一个List()容器里写的时候会出现性能瓶颈,写的速度会达到10W-100W行/s,而且需要在写的时候加上synchronized实现同步。虽然scala.collection.immutable.List类是不可变的,也是线程安全的,但是在1W join 1W的测试中,0.4s内写入10W行出现了数据丢失,加上synchronized字段可以简单避免这个问题,但同时带来了额外开销。

下面新的HashJoin.scala类,为每个需要join的bucket申请了一个数组空间,让每个线程返回的单个bucket join结果集保存在统一的数组中,最后对结果集进行merge,同时保留了并发求join的特性。

优化HashJoin.scala类之后,测试速度 1W join 1W 只要 0.1s,2W join 2W 时间是 0.2s-0.4s,(M=991的情况下,M可以调整)

class HashJoin(list1: List[List[Any]], list2: List[List[Any]]) {

  val _list1 = list1
  val _list2 = list2
  val M = 991
  val retContainer = new Array[List[Any]](M)
  for (i <- 0 to M-1) retContainer(i) = List[Any]()
  
  var ret = List[Any]()

  def innerHashJion(col: Int): Unit = {
    val start = System.currentTimeMillis()

    var keys1 = Set[Int]()
    var keys2 = Set[Int]()

    val sht1 = _list1.par.foldLeft(new SimpleHashTable) { (sht, list) =>
      val i = sht.put(list(col).toString, list)
      keys1 = keys1 + i
      sht
    }
    
    val sht2 = _list2.par.foldLeft(new SimpleHashTable) { (sht, list) =>
      val i = sht.put(list(col).toString, list)
      keys2 = keys2 + i
      sht
    }

    val end = System.currentTimeMillis()
    println("Hash took: " + (end-start) + "ms")
    
    val jointKeys = (keys1&keys2).toArray
    println("JointKeys Size: " + jointKeys.size)
    jointKeys.par.foreach(ind => retContainer(ind) = getBucketRecords(ind, sht1, sht2, col))

    def getBucketRecords(ind: Int, sht1: SimpleHashTable, sht2: SimpleHashTable, col: Int): List[Any] = {
      var bucketRet = List[Any]()
      sht1.get(ind).map(record1 => {
        sht2.get(ind).map(record2 => {
          val r1 = record1.asInstanceOf[List[Any]]
          val r2 = record2.asInstanceOf[List[Any]]
          if (r1(col) == r2(col)) bucketRet = (r1 ::: r2) :: bucketRet
        })
      })
      bucketRet
    }
  }

  def getRet: List[Any] = {
    mergeRets
    ret
  }

  def mergeRets = {
    val t1 = System.currentTimeMillis()
    retContainer.foreach({r =>
      ret = r ::: ret
    })
    val t2 = System.currentTimeMillis()
    println("Merge Rets took: " + (t2-t1) + " ms")
  }
}
我的测试单例如下,数据来自mongodb,进行了一次BSON to List的转换,可以替换掉传入的list1和list2,传入自己想要的测试数据:

object HashJoinTest {
  def main(args: Array[String]): Unit = {
    mongo()
  }
   
  def mongo(): Unit = {
    val loadS = System.currentTimeMillis()
    val list1 = BsonToList.getMongoList(0, 10000)
    val list2 = BsonToList.getMongoList(100000, 10000)
    val loadE = System.currentTimeMillis()
    println("Load Data took: " + (loadE-loadS) + "ms")

    val hj = new HashJoin(list1, list2)
    hj.innerHashJion(8)
    val ret = hj.getRet 
    val joinE = System.currentTimeMillis()
    println("HashJoin Totally took: " + (joinE-loadE) + "ms")
    
    println("Result size: " + ret.size)
    for (i <- (0 to 1)) println(ret(i))
  }
}


后续如果有优化结果,还会更新在这里。

(全文完)

目录
相关文章
|
2月前
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
59 5
|
2月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
52 3
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
44 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
98 0
|
2月前
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
32 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
2月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
48 0
|
2月前
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
55 0
|
2月前
|
分布式计算 算法 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
56 0
|
6月前
|
分布式计算 资源调度 Java
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
67 0
|
6月前
|
分布式计算 Hadoop Scala
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
55 0