大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方

简介: 大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节我们完成了如下的内容:


Spark RDD 操作方式Action

Spark RDD的 Key-Value RDD

详细解释与测试案例

梦的开始

写一个WordCount程序虽然看似简单,但它在大数据学习中有着深远的意义。就像编程世界中的“Hello World”,WordCount是我们迈入分布式计算世界的第一步。在这个过程中,我不仅加深了对Spark生态系统的理解,还亲身体验了大数据处理的核心思想:分而治之。


通过编写和运行这个程序,我意识到,尽管代码本身很简单,但其背后的概念却揭示了大数据处理的复杂性与挑战性。每个词频的统计背后,都代表着分布式系统中对数据的高效切分、分发和聚合。这使我更加意识到,在大数据的世界里,性能优化和资源管理是永恒的主题。


更重要的是,WordCount让我感受到Scala语言在处理并行计算时的优势。通过在实际环境中部署和运行这个程序,我也看到了自己从理论学习向实践应用迈出的重要一步。这不仅是一段代码的完成,更是我在大数据领域探索旅程的一个重要里程碑。


总的来说,这段经历让我更加坚定了继续深入学习和应用大数据技术的决心。WordCount不仅是学习的起点,更是打开大数据世界大门的一把钥匙。


环境依赖

首先要确保你之前的环境都搭建完毕了,最起码的要有单机的Spark,最好是有Spark集群,可以更好的进行学习和测试。


导入依赖

<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>icu.wzk</groupId>
    <artifactId>spark-wordcount</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <scala.version>2.12.10</scala.version>
        <spark.version>2.4.5</spark.version>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
            <groupId>com.typesafe</groupId>
            <artifactId>config</artifactId>
            <version>1.3.4</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>4.4.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>cn.lagou.sparkcore.WordCount</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

编写Scala

使用Scala完成我们的Word Count程序:

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object WordCount {
  def main(args: Array[String]): Unit = {
    var conf = new SparkConf().setAppName("ScalaHelloWorldCount")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val lines: RDD[String] = sc.textFile(args(0))

    val words: RDD[String] = lines.flatMap(line => line.split("\\s+"))
    val wordMap: RDD[(String, Int)] = words.map(x => (x, 1))
    val result: RDD[(String, Int)] = wordMap.reduceByKey(_ + _)

    result.foreach(println)
    sc.stop()
  }
}

大致的项目结构和内容,如下图所示:

编译项目

运行Maven的Package,等待执行完毕后,会在 target 下打包出一个 Jar 包。

如果是第一次打包,需要下载包,时间会比较久。

# 你也可以用Shell的方式
mvn clean package

运行的过程如下图所示:

打包完的结果大致如下:

上传项目

将项目上传到Spark的集群中:

cd /opt/wzk

我上传到该目录,该目录的情况大致如下:

运行项目

编写如下的指令,将任务提交到Spark集群中进行运行。

我这里随便找了个文件,你也可以找个文件进行运行。

spark-submit --master local[*] --class icu.wzk.WordCount spark-wordcount-1.0-SNAPSHOT.jar /opt/wzk/goodtbl.java

运行结果如下图:

经过一段时间的计算之后,可以看到最终的结果如下图所示:

编写Java

package icu.wzk;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;

public class JavaWordCount {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setAppName("JavaWordCount")
                .setMaster("local[*]");
        JavaSparkContext sc = new JavaSparkContext(conf);
        sc.setLogLevel("WARN");
        JavaRDD<String> lines = sc.textFile(args[0]);
        JavaRDD<String> words = lines
                .flatMap(line -> Arrays.stream(line.split("\\s+")).iterator());
        JavaPairRDD<String, Integer> wordsMap = words
                .mapToPair(word -> new Tuple2<>(word, 1));
        JavaPairRDD<String, Integer> results = wordsMap.reduceByKey((x, y) -> x + y);
        results.foreach(elem -> System.out.println(elem));
        sc.stop();
    }
}

编译项目

和上面一样,Scala的方式一样:

上传项目

同样的,和上述的Scala的过程一样,将项目上传:

/opt/wzk/spark-wordcount-1.0-SNAPSHOT.jar

运行项目

这里注意,写的是Java的类,而不是Scala的启动:

spark-submit --master local[*] --class icu.wzk.JavaWordCount spark-wordcount-1.0-SNAP

运行的过程截图如下图所示:

等待执行完毕,最终的结果如下图所示:

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
6月前
|
存储 供应链 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
|
6月前
|
存储 SQL Java
Java 大视界 -- Java 大数据在智能医疗手术风险评估与术前方案制定中的应用探索(203)
本文探讨了Java大数据技术在智能医疗手术风险评估与术前方案制定中的创新应用。通过多源数据整合、智能分析模型构建及知识图谱技术,提升手术风险预测准确性与术前方案制定效率,助力医疗决策智能化,推动精准医疗发展。
|
7月前
|
机器学习/深度学习 Java 大数据
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
|
7月前
|
数据采集 机器学习/深度学习 Java
Java 大视界 -- Java 大数据在智能体育赛事运动员体能监测与训练计划调整中的应用(200)
本篇文章聚焦 Java 大数据在智能体育赛事中对运动员体能监测与训练计划的智能化应用。通过构建实时数据采集与分析系统,结合机器学习模型,实现对运动员体能状态的精准评估与训练方案的动态优化,推动体育训练迈向科学化、个性化新高度。
|
7月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
Java Scala
java集合和scala集合互转
使用 scala.collection.JavaConverters 与Java集合交互。它有一系列的隐式转换,添加了asJava和asScala的转换方法。使用它们这些方法确保转换是显式的,有助于阅读: import scala.
1427 0
|
4月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
260 1
|
4月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
269 1
|
5月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案