图像处理之高斯模糊

简介: 高斯模糊是一种两维的卷积模糊操作,在图像完成高斯模糊相对于均值模糊来说, 计算量会增加,但是高斯模糊可以实现一些特殊效果,特别是在图像噪声(非椒盐 噪声)消去方面,更是有着非常好的效果。一维高斯公式如下: 其中x是制定[-n,n]范围的整数,sigma代表标准方差。

高斯模糊是一种两维的卷积模糊操作,在图像完成高斯模糊相对于均值模糊来说,

计算量会增加,但是高斯模糊可以实现一些特殊效果,特别是在图像噪声(非椒盐

噪声)消去方面,更是有着非常好的效果。一维高斯公式如下:


其中x是制定[-n,n]范围的整数,sigma代表标准方差。通常取值为1.

一维高斯函数Java代码如下:

	private float[] get1DKernalData(int n, float sigma) {
		float sigma22 = 2*sigma*sigma;
		float Pi2 = 2*(float)Math.PI;
		float sqrtSigmaPi2 = (float)Math.sqrt(Pi2) * sigma ;
		int size = 2*n + 1;
		int index = 0;
		float[] kernalData = new float[size];
		for(int i=-n; i<=n; i++) {
			float distance = i*i;
			kernalData[index] = (float)Math.exp((-distance)/sigma22)/sqrtSigmaPi2;
			System.out.println("\t" + kernalData[index]);
			index++;
		}
		return kernalData;
	}

假设输入 n= 1, sigma = 1时,输出的Kernel数据为:

0.24197073, 0.3989423, 0.24197073


两维的高斯分布函数为:


对应的Java实现代码为:

	public float[][] get2DKernalData(int n, float sigma) {
		int size = 2*n +1;
		float sigma22 = 2*sigma*sigma;
		float sigma22PI = (float)Math.PI * sigma22;
		float[][] kernalData = new float[size][size];
		int row = 0;
		for(int i=-n; i<=n; i++) {
			int column = 0;
			for(int j=-n; j<=n; j++) {
				float xDistance = i*i;
				float yDistance = j*j;
				kernalData[row][column] = (float)Math.exp(-(xDistance + yDistance)/sigma22)/sigma22PI;
				column++;
			}
			row++;
		}
		
		for(int i=0; i<size; i++) {
			for(int j=0; j<size; j++) {
				System.out.print("\t" + kernalData[i][j]);
			}
			System.out.println();
			System.out.println("\t ---------------------------");
		}
		return kernalData;
	}

当n=1, sigma=1时对应输出的Kernel数据为:

    0.058549833   0.09653235     0.058549833

    0.09653235     0.15915494     0.09653235

    0.058549833   0.09653235     0.058549833

一个2D高斯分布的图可以表示如下:


高斯过滤在图像处理是一种低通滤波,会除去图像的细节而保持整体不变化,在图像美化和特效

方面,高斯过滤有这很多应用。高斯模糊不同于均值模糊!

 

本文实现完整的高斯模糊算法包括下面几个步骤:

1. 生成高斯操作数即Kernel Data

2. 从图像中读取像素,利用第一步的操作数,完成卷积。

3. 发现图像处理前后的最大像素值peak得出rate

4. 完成归一化操作,返回处理后像素数组


关键程序解析:

利用操作数完成卷积的代码参看以前的Blog文章《图像处理之理解卷积

完成归一化操作的算法非常简单, 主要是利用第三步计算出来的rate

        // normalization
        float rate = inMax/outMax;
        System.out.println("Rate = " + rate);
        for(int row=0; row<height; row++) {
        	for(int col=0; col<width; col++) {
        		index = row * width + col;
        		int rgb1 = tempoutPixels[index];
				int red = (rgb1 >> 16) & 0xff;
				int green = (rgb1 >> 8) & 0xff;
				int blue = rgb1 & 0xff;
				red = (int)(rate * red);
				green = (int)(rate * green);
				blue = (int)(rate * blue);
				outPixels[index] = (rgb1 & 0xff000000) | (red << 16) | (green << 8) | blue;
        	}
        }

高斯模糊效果如下:


 - 左边为原图                                                                                                                                                            - 右边为高斯模糊之后效果,发现皱纹和手部滑了

等等现在还不最cool的效果,高斯模糊之后如果与原图像叠加会出现一种Glow的

效果,好像灯光打在图像上一样,Glow处理之后的运行效果如下:

原图:


实现Glow Filter之后的图像:


实现Glow算法只是高斯模糊输出像素值叠加原来的像素值。

		int index = 0;
		for ( int y = 0; y < height; y++ ) {
			for ( int x = 0; x < width; x++ ) {
				int rgb1 = outPixels[index];
				int r1 = (rgb1 >> 16) & 0xff;
				int g1 = (rgb1 >> 8) & 0xff;
				int b1 = rgb1 & 0xff;

				int rgb2 = inPixels[index];
				int r2 = (rgb2 >> 16) & 0xff;
				int g2 = (rgb2 >> 8) & 0xff;
				int b2 = rgb2 & 0xff;

				r1 = PixelUtils.clamp( (int)(r1 + a * r2) );
				g1 = PixelUtils.clamp( (int)(g1 + a * g2) );
				b1 = PixelUtils.clamp( (int)(b1 + a * b2) );

				inPixels[index] = (rgb1 & 0xff000000) | (r1 << 16) | (g1 << 8) | b1;
				index++;
			}
		}

转载时请注明出处!!,谢谢!
目录
相关文章
|
Linux
Linux安装Cmake
Linux安装Cmake
245 0
|
3月前
|
Web App开发 数据安全/隐私保护 Python
万能ck提取登录软件,京东贴吧淘宝拼多多cookie提取工具,python框架分享
这个框架使用了Selenium进行浏览器自动化操作,包含了京东和淘宝的登录示例。代码展示了如
|
10月前
|
机器学习/深度学习 人工智能 算法
《C++与 BLAS、LAPACK:加速人工智能算法的线性代数秘籍》
本文探讨了线性代数在人工智能中的核心地位及其对算法性能的影响,重点介绍了 C++ 中的 BLAS 和 LAPACK 库。这些库通过高效的基础线性代数运算和高级矩阵操作,显著提升了神经网络、数据降维和推荐系统等算法的计算效率。文章还详细讲解了如何在 C++ 项目中集成和优化这些库,以实现更好的性能。
267 19
|
8月前
|
监控 数据挖掘 API
唯品会商品列表接口(唯品会 API 系列)
唯品会商品列表接口助力电商数据分析、竞品调研和价格监控。开发者可通过合法途径获取接口权限,使用HTTP GET/POST请求获取商品名称、价格等信息,返回JSON格式数据。Python示例代码展示如何调用接口并解析返回数据。应用场景涵盖市场调研、价格监控、数据挖掘与分析及电商运营优化,为企业决策提供有力支持。
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记十:结印动作识别
该项目基于恩培大佬的《火影结印识别》小项目,使用yolov5实现手势识别功能。项目包含数据集准备、模型训练和代码实现,可在无GPU环境下运行。代码利用状态机检测手势序列,完成特定结印后触发音效播放。[GitHub地址](https://github.com/enpeizhao/CVprojects)提供了详细步骤和示例代码。
|
数据采集 机器学习/深度学习 人工智能
云栖实录 | GenAI 时代 AI Infra 工程技术趋势与平台演进
本文根据2024云栖大会实录整理而成,演讲信息如下: 演讲人:林伟 | 阿里云智能集团研究员、阿里云人工智能平台 PAI 负责人;黄博远|阿里云智能集团资深产品专家、阿里云人工智能平台 PAI 产品负责人 活动:2024 云栖大会 - AI Infra 核心技术专场、人工智能平台 PAI 年度发布专场
|
Android开发
【亲测,安卓版】快速将网页网址打包成安卓app,一键将网页打包成app,免安装纯绿色版本,快速将网页网址打包成安卓apk
【亲测,安卓版】快速将网页网址打包成安卓app,一键将网页打包成app,免安装纯绿色版本,快速将网页网址打包成安卓apk
914 0
|
并行计算 PyTorch 算法框架/工具
PyTorch中查看GPU使用情况以及一些重要函数
PyTorch中查看GPU使用情况以及一些重要函数
1323 0
|
存储 安全 芯片
STM32单片机实现Bootloader跳转的关键步骤
STM32单片机实现Bootloader跳转的关键步骤
626 0
|
SpringCloudAlibaba Java Spring
阿里内部最新教材:Spring+SpringBoot+SpringCloud全家桶第五版
给大家分享的就是一份来自阿里的Spring+SpringBoot+SpringCloud全家桶实战手册!本手册包含了spring源码+springboot+springcloudAlibaba全彩笔记!