实时数据之python操作elasticsearch监控数据插入图表分析

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介:

  例行公事,有些人可能不太了解elasticsearch,下面搜了一段,大家瞅一眼。


Elasticsearch是一款分布式搜索引擎,支持在大数据环境中进行实时数据分析。它基于Apache Lucene文本搜索引擎,内部功能通过ReST API暴露给外部。除了通过HTTP直接访问Elasticsearch,还可以通过支持Java、JavaScript、Python及更多语言的客户端库来访问。它也支持集成Apache Hadoop环境。Elasticsearch在有些处理海量数据的公司中已经有所应用,如GitHub、Foursquare和SoundCloud等。


elasticsearch 他对外提供了rest的http的接口,貌似很强大的样子。 但是咱们的一些数据平台市场会对于elasticsearch的数据进行分析,尤其是实时分析。 当然不能用 http的方式。 比如官网的demo提供的例子:


下面是查询,/ceshi 是索引,rui是type,搜索的内容是,title是jones的。 

1
curl http: //vim.xiaorui.cc:9200/ceshi/rui/_search?q=title:jones&size=5&pretty=true

添加数据


1
curl  - X POST       - '{      "title": "jones",      "amount": 5.7    }'


1.x之后,貌似不能直接curl,

注意,唯一标识符是放置在URL中而不是请求体中。如果您忽略这个标识符,搜索会返回一个错误,类似如下:

 No handler found for uri [/ceshi/rui/] and method [PUT]

发现用0.90.x的人,还是很多的~



当然在python里面,咱们可以用urllib2来搞数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#xiaorui.cc
import  urllib2
import  urlib
import  json
 
 
url  =  'http://vim.xiaorui.cc:9200/ceshi/rui'
data  =  {
     'title' 'jones' ,
     'amount' 5.7
     }
 
data  =  json.dumps(data)
 
req  =  urllib2.Request(url, data, headers)
out  =  urllib2.urlopen(req)
print  out.read()


但是这样的话,速度明显有点慢,官方提供了更加快速更方便的方法。

>>> from datetime import datetime

>>> from elasticsearch import Elasticsearch


# 连接elasticsearch 的端口,默认是9200

>>> es = Elasticsearch()


# 创建索引,索引的名字是my-index, 如果已经存在了,就给个400

>>> es.indices.create(index='my-index', ignore=400)

{u'acknowledged': True}


# 插入

>>> es.index(index="my-index", doc_type="test-type", id=42, body={"any": "data", "timestamp": datetime.now()})

{u'_id': u'42', u'_index': u'my-index', u'_type': u'test-type', u'_version': 1, u'ok': True}


# 查询

>>> es.get(index="my-index", doc_type="test-type", id=42)['_source']

{u'any': u'data', u'timestamp': u'2013-05-12T19:45:31.804229'}



其实熟悉mongodb的人,再看elasticsearch的语法,会发现非常的熟悉。

1
2
3
4
5
6
7
8
9
10
11
12
13
res  =  es.search(
     index = 'belajar' ,
     doc_type = 'pesan' ,
     body = {
       'query' : {
         'range' : {
           'postDate' : {
               'from' : '20100101' 'to' : '20140101'
           }
         }
       }
     }
)


上面的意思是,查询这个时间段里面的数据。

1
2
3
4
5
6
7
8
9
10
11
res  =  es.search(
     index = 'belajar' ,
     doc_type = 'pesan' ,
     body = {
       'query' : {
         'match' : {
           'user' 'xiaorui'
         }
       }
     }
)


上面是精确的匹配,匹配user值为 xiaorui 的数据。


一些详细的语法就不在描述了,大家看下官方的文档,然后再python引用就行了。


原文:http://rfyiamcool.blog.51cto.com/1030776/1420811


下面的数据,是我用python的elasticsearch库,打的随机数据。  关键是kibana会把es里面的数据,相应的统计好的。


wKioL1OKuNyASriYAAJVytUU3Xk029.jpg


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
curl -XGET  'http://10.10.10.66:9200/_all/_search?pretty'  -d '{
   "facets" : {
     "0" : {
       "date_histogram" : {
         "field" "@timestamp" ,
         "interval" "1m"
       },
       "global" true ,
       "facet_filter" : {
         "fquery" : {
           "query" : {
             "filtered" : {
               "query" : {
                 "query_string" : {
                   "query" "*"
                 }
               },
               "filter" : {
                 "bool" : {
                   "must" : [
                     {
                       "match_all" : {}
                     }
                   ]
                 }
               }
             }
           }
         }
       }
     }
   },
   "size" : 0
}'


wKiom1OKuRaiE0KeAAOsPXk8l3I020.jpg


支持很多的语法,可以随意的query查询,你想要的组合数据。

wKioL1OLEvOxr1a_AAEoe60ImUQ878.jpg

还可以多条件查询

wKioL1OLFleQtjx1AAJuetRLjRU990.jpg


其中遇到了一个问题,kibana3 时间貌似是UTC的,图表显示的时候,总是差距8个小时,需要调整源码,改成北京时间。




其实对我来说,我还是更喜欢用mongodb,他的bjson,让我爽到天,哈 ! 要是量大的话,用mongodb的分片,elasticsearch的dsl语法,还是让我有些看不下去。 我这里正在做通知平台,以前都是把数据放在mongodb,然后用各种图表展示。  我发现kibana很绚丽,就在研究kibana的一些个特性, 他只是为elasticsearch存在的。 所以大家也不要在尝试改掉kibana,直接把数据插入到elasticsearch,然后通过kibana显示就行了。





 本文转自 rfyiamcool 51CTO博客,原文链接:http://blog.51cto.com/rfyiamcool/1420811 ,如需转载请自行联系原作者

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2天前
|
JSON 安全 数据安全/隐私保护
深度剖析:Python如何运用OAuth与JWT,为数据加上双保险🔐
【10月更文挑战第2天】当讨论Web应用安全时,认证与授权至关重要。OAuth 2.0 和 JSON Web Tokens (JWT) 是现代Web应用中最流行的两种认证机制。OAuth 2.0 是一种开放标准授权协议,允许资源拥有者授予客户端访问资源的权限,而不需直接暴露凭据。JWT 则是一种紧凑、URL 安全的信息传输方式,自我包含认证信息,无需服务器查询数据库验证用户身份。在 Python 中,Flask-OAuthlib 和 PyJWT 分别用于实现 OAuth 2.0 和 JWT 的功能。结合两者可构建高效且安全的认证体系,提高安全性并简化交互过程,为数据安全提供双重保障。
15 7
|
2天前
|
数据采集 机器学习/深度学习 存储
使用 Python 清洗日志数据
使用 Python 清洗日志数据
10 2
|
4天前
|
Python
Python编程案例:同一工作簿不同表单特定数据添加到工作簿的另一表单里
Python编程案例:同一工作簿不同表单特定数据添加到工作簿的另一表单里
10 1
|
2天前
|
Web App开发 前端开发 JavaScript
Python编程—Ajax数据爬取(一)
Python编程—Ajax数据爬取(一)
|
2天前
|
前端开发 NoSQL MongoDB
Python编程—Ajax数据爬取(二)
Python编程—Ajax数据爬取(二)
10 0
|
3天前
|
安全 数据安全/隐私保护 开发者
保护敏感数据:使用Python加密数据的实用方法
保护敏感数据是一项基本的安全实践,Python通过上述库提供了强大的加密工具来实现这一目标。选择哪种方法取决于具体的应用场景和安全需求:对称加密(如AES)适合快速处理大量数据,而非对称加密(如RSA)更适合安全地交换密钥或进行身份验证。哈希函数则用于验证数据的完整性和一致性。通过合理使用这些技术,开发者可以大大增强其应用程序的安全性。
16 0
|
3天前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
12 0
|
自然语言处理 算法 Python
|
自然语言处理 算法 索引
|
2天前
|
人工智能 数据挖掘 Serverless
探索Python编程:从基础到实战
【10月更文挑战第2天】本文将带你走进Python的世界,了解它的基本语法、数据结构、函数等核心概念,并通过实例演示如何应用这些知识解决实际问题。无论你是编程新手还是有一定经验的开发者,都能在这篇文章中找到有价值的内容。让我们一起开启Python编程之旅吧!