elasticsearch function_score Query——文档排序结果的最后一道墙

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介:

function_score Query

The function_score query is the ultimate tool for taking control of the scoring process. It allows you to apply a function to each document that matches the main query in order to alter or completely replace the original query _score.

In fact, you can apply different functions to subsets of the main result set by using filters, which gives you the best of both worlds: efficient scoring with cacheable filters.

It supports several predefined functions out of the box:

weight
Apply a simple boost to each document without the boost being normalized: a  weight of  2 results in  2 * _score.
field_value_factor
Use the value of a field in the document to alter the  _score, such as factoring in a  popularity count or number of  votes.
random_score
Use consistently random scoring to sort results differently for every user, while maintaining the same sort order for a single user.
Decay functionslinearexpgauss
Incorporate sliding-scale values like  publish_dategeo_location, or  price into the  _score to prefer recently published documents, documents near a latitude/longitude (lat/lon) point, or documents near a specified price point.
script_score
Use a custom script to take complete control of the scoring logic. If your needs extend beyond those of the functions in this list, write a custom script to implement the logic that you need.

Without the function_score query, we would not be able to combine the score from a full-text query with a factor like recency. We would have to sort either by _score or by date; the effect of one would obliterate the effect of the other. This query allows you to blend the two together: to still sort by full-text relevance, but giving extra weight to recently published documents, or popular documents, or products that are near the user’s price point. As you can imagine, a query that supports all of this can look fairly complex. We’ll start with a simple use case and work our way up the complexity ladder.

 

转自:https://www.elastic.co/guide/en/elasticsearch/guide/current/function-score-query.html












本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6480761.html,如需转载请自行联系原作者


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
5月前
|
SQL JSON 大数据
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
这篇文章是Elasticsearch的进阶使用指南,涵盖了Search API的两种检索方式、Query DSL的基本语法和多种查询示例,包括全文检索、短语匹配、多字段匹配、复合查询、结果过滤、聚合操作以及Mapping的概念和操作,还讨论了Elasticsearch 7.x和8.x版本中type概念的变更和数据迁移的方法。
ElasticSearch的简单介绍与使用【进阶检索】 实时搜索 | 分布式搜索 | 全文搜索 | 大数据处理 | 搜索过滤 | 搜索排序
|
4月前
|
JSON 自然语言处理 算法
ElasticSearch基础2——DSL查询文档,黑马旅游项目查询功能
DSL查询文档、RestClient查询文档、全文检索查询、精准查询、复合查询、地理坐标查询、分页、排序、高亮、黑马旅游案例
|
4月前
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
|
5月前
|
存储 搜索推荐 API
探究:Elasticsearch 文档的 _id 是 Lucene 的 docid 吗?
【8月更文挑战第31天】在深入探索Elasticsearch(简称ES)这一强大的搜索引擎时,了解其底层存储机制——特别是与Lucene的关系,对于优化查询性能、设计高效的数据模型至关重要。其中,一个常见且容易引发误解的问题便是:Elasticsearch中文档的_id字段是否直接等同于Lucene的docid?本文将通过图文并茂的方式,详细剖析这一问题,帮助读者理解两者之间的微妙关系。
128 0
|
5月前
|
JSON 测试技术 API
黑马商城 Elasticsearch从入门到部署 RestClient操作文档
这篇文章详细介绍了如何使用Java的RestHighLevelClient客户端与Elasticsearch进行文档操作,包括新增、查询、删除、修改文档以及批量导入文档的方法,并提供了相应的代码示例和操作步骤。
|
5月前
|
JSON 自然语言处理 Java
Elasticsearch从入门到部署 文档操作 RestAPI
这篇文章详细介绍了Elasticsearch中文档的增删改查操作,并通过Java的RestHighLevelClient客户端演示了如何通过REST API与Elasticsearch进行交云,包括初始化客户端、索引库的创建、删除和存在性判断等操作。
|
5月前
|
消息中间件 监控 数据挖掘
Elasticsearch 使用误区之二——频繁更新文档
【8月更文挑战第15天】在大数据与搜索技术日益成熟的今天,Elasticsearch 作为一款分布式、RESTful 风格的搜索与数据分析引擎,凭借其强大的全文搜索能力和可扩展性,成为了众多企业和开发者的首选。然而,在使用 Elasticsearch 的过程中,一些常见的误区可能会导致性能下降或数据不一致等问题,其中“频繁更新文档”便是一个不容忽视的误区。本文将深入探讨这一误区的根源、影响及解决方案,帮助读者更好地利用 Elasticsearch。2
123 0
|
5月前
|
自然语言处理 Java 索引
ElasticSearch 实现分词全文检索 - Java SpringBoot ES 文档操作
ElasticSearch 实现分词全文检索 - Java SpringBoot ES 文档操作
51 0
|
6月前
|
存储 SQL 自然语言处理
Elasticsearch 索引与文档的常用操作总结二:复杂条件查询
Elasticsearch 索引与文档的常用操作总结二:复杂条件查询
187 0
|
6月前
|
JSON API 数据格式
Elasticsearch 索引与文档的常用操作总结一
Elasticsearch 索引与文档的常用操作总结一
61 0