Apache Arrow 内存数据

简介:

1.概述

  Apache Arrow 是 Apache 基金会全新孵化的一个顶级项目。它设计的目的在于作为一个跨平台的数据层,来加快大数据分析项目的运行速度。

2.内容

  现在大数据处理模型很多,用户在应用大数据分析时,除了将 Hadoop 等大数据平台作为一个存储和批处理平台之外,同样也得关注系统的扩展性和性能。过去开源社区已经发布了很多工具来完善大数据分析的生态系统,这些工具包含了数据分析的各个层面,例如列式存储格式(Parquet,ORC),内存计算模型(Drill,Spark,Impala 和 Storm)以及其强大的 API 接口。而 Arrow 则是最新加入的一员,它提供了一种跨平台应用的内存数据交换格式。

  在数据快速增长和复杂化的情况下,提高大数据分析性能一个重要的途径是对列式数据的设计和处理。列式数据处理借助了向量计算和 SIMD 使我们可以充分挖掘硬件的潜力。而 Apache Drill 其大数据查询引擎无论是在硬盘还是内存中数据都是以列的方式存在的,而 Arrow 就是由 Drill 中的 Value Vector 这一数据格式发展而来。此外,Arrow 也支持关系型和动态数据集。

  Arrow 的诞生为大数据生态带来了很多可能性,有了 Arrow 作为今后标准数据交换格式,各个数据分析的系统和应用之间的交互性可以说是揭开了新的篇章。过去大部分的 CPU 周期都花在了数据的序列化与反序列化上,现在我们则能够实现不同系统之间数据的无缝链接。这意味着使用者在不同系统结合时,不用在数据格式上话费过多的时间。

3.Arrow Group

  Arrow 的内存数据结构如下所示:

  从上图中,我们可以很清晰的看出,传统的内存数据格式,各个字段的分布是以没一行呈现,相同字段并未集中排列在一起。而通过 Arrow 格式化后的内存数据,可以将相同字段集中排列在一起。我们可以很方便的使用 SQL 来操作数据。

  传统的访问各个数据模型中的数据以及使用 Arrow 后的图,如下所示:

  通过上图可以总结出以下观点:

  • 每个系统都有属于自己的内存格式。
  • 70~80% 的 CPU 浪费在序列化和反序列化上。
  • 在多个项目都实现的类似的功能(Copy & Convert)。

  而在看上述使用 Arrow 后,得出以下结论:

  • 所有的系统都使用相同的内存格式。
  • 没有跨系统通信开销。
  • 项目可以贡献功能(比如,Parquet 到 Arrow 的读取)。

4.Arrow 数据格式

  Arrow 列式数据格式如下所示:

复制代码
persons = [{
    name: 'wes',
    iq: 180,
    addresses: [
    {number: 2, street 'a'},
    {number: 3, street 'bb'}
    ]
}, {
    name: 'joe',
iq: 100,
addresses: [
{number: 4, street 'ccc'}, {number: 5, street 'dddd'}, {number: 2, street 'f'}
]
}]
复制代码

  从上述 JSON 数据格式来看,person.iq 分别是 180 和 100,以如下方式排列:

  而 persons.addresses.number 的排列格式如下所示:

5.特性

5.1 Fast

  Apache Arrow 执行引擎,利用最新的SIMD(单输入多个数据)操作包括在模型处理器,用于分析数据处理本地向量优化。数据的列式布局也允许更好地利用 CPU 缓存,将所有与列操作相关的数据以尽可能紧凑的格式放置。

5.2 Flexible

  Arrow 扮演着高性能的接口在各个复杂的系统中,它也支持工业化的编程语言。Java,C,C++,Python 以及今后更多的语言。

5.3 Standard

  Apache Arrow 由 13 个开源项目开发者支持,包含 Calcite, Cassandra, Drill, Hadoop, HBase, Ibis, Impala, Kudu, Pandas, Parquet, Phoenix, Spark, 和 Storm。

6.Example

  使用 Python 来处理 Spark 或是 Drill 中的数据,如下图所示:

  • 快速的、语言无关的二进制数据帧格式的文件。
  • 使用 Python 去写。
  • 读取速度接近磁盘 IO 性能。

  部分实现示例代码,如下所示:

import feather
path = 'my_data.feather'
feather.write_dataframe(df, path)
df = feather.read_dataframe(path)

7.总结

  Apache Arrow 当前发布了 0.1.0 第一个版本,官方目前获取的资料的信息较少,大家可以到官方的 JIRA 上获取更多咨询信息,以及 Arrow 提供的开发者聊天室去获取更多的帮助。

8.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

联系方式: 
邮箱:smartloli.org@gmail.com 
Twitter: https://twitter.com/smartloli 
QQ群(Hadoop - 交流社区1): 424769183 
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢! 

热爱生活,享受编程,与君共勉!



本文转自哥不是小萝莉博客园博客,原文链接:http://www.cnblogs.com/smartloli/,如需转载请自行联系原作者

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
10月前
|
SQL 分布式计算 运维
dataphin评测报告
本文是一篇关于Dataphin的使用总结与测评报告。作为一位开发工程师,作者在使用Dataphin过程中发现其具备数据规范化构建、全链路数据治理、数据资产化及跨平台兼容的优势,能有效降低开发门槛并提升效率。文章详细介绍了从进入工作台到数据规划、引入数据、数据处理、功能周期任务补数据、数据验证以及数据分析的全流程操作步骤,并通过截图辅助说明,帮助用户快速上手Dataphin,实现高效的数据开发与治理,在测评使用过程中整体感觉dataphin这个产品功能非常强大,能够为开发人员提高工作效率,界面也是比较清晰的感觉,容易初学者上手学习。
235 3
dataphin评测报告
|
9月前
|
数据可视化 数据挖掘 BI
指标透明化+管理敏捷化:Dataphin指标关系图与业务指标管理
通过Dataphin的业务指标定义和管理功能,业务人员能够以标准化方式快速创建业务指标并详细说明其详情,从而实现与技术人员的高效沟通,促进相关技术指标的快速开发。此外,业务人员还可以利用Dataphin的指标关系图功能,直观地理解指标的加工逻辑,并迅速定位异常数据根因,从而显著提高问题解决的效率。
400 8
|
机器学习/深度学习 数据采集 前端开发
深入探讨模型泛化能力的概念、重要性以及如何通过交叉验证来有效评估和提升模型的泛化能力
【6月更文挑战第13天】本文探讨了机器学习中模型泛化能力的重要性,它是模型对未知数据预测的准确性。过拟合和欠拟合影响泛化能力,而交叉验证是评估模型性能的有效工具。通过K折交叉验证等方法,可以发现并优化模型,提高泛化能力。建议包括调整模型参数、选择合适模型、数据预处理、特征选择和集成学习。Python中可利用scikit-learn的cross_val_score函数进行交叉验证。
1957 7
|
10月前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
503 12
|
12月前
|
机器学习/深度学习 存储 缓存
LLM高效推理:KV缓存与分页注意力机制深度解析
随着大型语言模型(LLM)规模和复杂性的增长,高效推理变得至关重要。KV缓存和分页注意力是优化LLM推理的两项关键技术。KV缓存通过存储键值对减少重复计算,而分页注意力则通过将序列分割成小块来降低内存消耗,从而有效处理长序列。本文深入剖析这些技术的工作原理及其在仅解码器模型中的应用,探讨其优势与挑战,并展示其实现示例。
813 16
LLM高效推理:KV缓存与分页注意力机制深度解析
|
11月前
|
机器学习/深度学习 人工智能 缓存
MHA2MLA:0.3%数据微调!复旦团队开源推理加速神器,KV缓存狂降96.87%
MHA2MLA是复旦大学、华东师范大学、上海AI Lab等机构联合推出的数据高效微调方法,通过引入多头潜在注意力机制(MLA),显著优化基于Transformer的LLM推理效率,降低推理成本。
427 1
MHA2MLA:0.3%数据微调!复旦团队开源推理加速神器,KV缓存狂降96.87%
|
消息中间件 存储 监控
RocketMQ Tag 详解!
本文详细介绍了 RocketMQ 中 Tag 的原理及其应用场景。Tag 是一种消息过滤机制,允许生产者在发送消息时指定标签,消费者据此选择性消费。文章通过源码分析展示了 Tag 在消息发送、存储及消费阶段的作用,并提供了完整的示例代码。尽管 Tag 功能简单高效,但也存在单一维度过滤等局限性。适合需要高效、低延迟消息传递的场景,如日志监控、电商系统等。
1819 2
|
机器学习/深度学习 人工智能 自然语言处理
人工智能技术在金融领域的应用有哪些?
【10月更文挑战第16天】人工智能技术在金融领域的应用有哪些?
4544 1
|
资源调度 调度 混合部署
Koordinator 助力云原生应用性能提升,小红书混部技术实践
本文基于 2023 云栖大会上关于 Koordinator 分享的实录,介绍小红书通过规模化落地混部技术来大幅提升集群资源效能,降低业务资源成本。