CNN tflearn处理mnist图像识别代码解说——conv_2d参数解释,整个网络的训练,主要就是为了学那个卷积核啊。

本文涉及的产品
图像搜索,7款服务类型 1个月
简介:

官方参数解释:

Convolution 2D

tflearn.layers.conv.conv_2d (incoming, nb_filter, filter_size, strides=1, padding='same', activation='linear', bias=True, weights_init='uniform_scaling', bias_init='zeros', regularizer=None, weight_decay=0.001, trainable=True, restore=True, reuse=False, scope=None, name='Conv2D')

Input

4-D Tensor [batch, height, width, in_channels].

Output

4-D Tensor [batch, new height, new width, nb_filter].

Arguments

  • incomingTensor. Incoming 4-D Tensor.
  • nb_filterint. The number of convolutional filters.
  • filter_sizeint or list of int. Size of filters.
  • strides: 'intor list ofint`. Strides of conv operation. Default: [1 1 1 1].
  • paddingstr from "same", "valid". Padding algo to use. Default: 'same'.
  • activationstr (name) or function (returning a Tensor) or None. Activation applied to this layer (see tflearn.activations). Default: 'linear'.
  • biasbool. If True, a bias is used.
  • weights_initstr (name) or Tensor. Weights initialization. (see tflearn.initializations) Default: 'truncated_normal'.
  • bias_initstr (name) or Tensor. Bias initialization. (see tflearn.initializations) Default: 'zeros'.
  • regularizerstr (name) or Tensor. Add a regularizer to this layer weights (see tflearn.regularizers). Default: None.
  • weight_decayfloat. Regularizer decay parameter. Default: 0.001.
  • trainablebool. If True, weights will be trainable.
  • restorebool. If True, this layer weights will be restored when loading a model.
  • reusebool. If True and 'scope' is provided, this layer variables will be reused (shared).
  • scopestr. Define this layer scope (optional). A scope can be used to share variables between layers. Note that scope will override name.
  • name: A name for this layer (optional). Default: 'Conv2D'.

 

代码:

     # 64 filters
     net  =  tflearn.conv_2d(net,  64 3 , activation = 'relu' )
按照我的理解:

其中的filter(卷积核)就是
[1 0 1 
 0 1 0
 1 0 1],size=3
因为设置了64个filter,那么卷积操作后有64个卷积结果作为输入的特征(feature map)。难道后面激活函数就是因为选择部分激活???


图的原文:http://cs231n.github.io/convolutional-networks/

 

如果一个卷积层有4个feature map,那是不是就有4个卷积核?
是的。


这4个卷积核如何定义?
通常是随机初始化再用BP算梯度做训练。如果数据少或者没有labeled data的话也可以考虑用K-means的K个中心点,逐层做初始化。

卷积核是学习的。卷积核是因为权重的作用方式跟卷积一样,所以叫卷积层,其实你还是可以把它看成是一个parameter layer,需要更新的。
这四个卷积核就属于网络的参数,然后通过BP进行训练
整个网络的训练,主要就是为了学那个卷积核啊。
先初始化一个,之后BP调整,你可以去看看caffe的源码



--------------------------------------------------------------------------------------------------
下面内容摘自:http://blog.csdn.net/bugcreater/article/details/53293075
  1. from __future__ import division, print_function, absolute_import  
  2.   
  3. import tflearn  
  4. from tflearn.layers.core import input_data, dropout, fully_connected  
  5. from tflearn.layers.conv import conv_2d, max_pool_2d  
  6. from tflearn.layers.normalization import local_response_normalization  
  7. from tflearn.layers.estimator import regression  
  8. #加载大名顶顶的mnist数据集(http://yann.lecun.com/exdb/mnist/)  
  9. import tflearn.datasets.mnist as mnist  
  10. X, Y, testX, testY = mnist.load_data(one_hot=True)  
  11. X = X.reshape([-1, 28, 28, 1])  
  12. testX = testX.reshape([-1, 28, 28, 1])  
  13.   
  14. network = input_data(shape=[None, 28, 28, 1], name='input')  
  15. # CNN中的卷积操作,下面会有详细解释  
  16. network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")  
  17. # 最大池化操作  
  18. network = max_pool_2d(network, 2)  
  19. # 局部响应归一化操作  
  20. network = local_response_normalization(network)  
  21. network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")  
  22. network = max_pool_2d(network, 2)  
  23. network = local_response_normalization(network)  
  24. # 全连接操作  
  25. network = fully_connected(network, 128, activation='tanh')  
  26. # dropout操作  
  27. network = dropout(network, 0.8)  
  28. network = fully_connected(network, 256, activation='tanh')  
  29. network = dropout(network, 0.8)  
  30. network = fully_connected(network, 10, activation='softmax')  
  31. # 回归操作  
  32. network = regression(network, optimizer='adam', learning_rate=0.01,  
  33.                      loss='categorical_crossentropy', name='target')  
  34.   
  35. # Training  
  36. # DNN操作,构建深度神经网络  
  37. model = tflearn.DNN(network, tensorboard_verbose=0)  
  38. model.fit({'input': X}, {'target': Y}, n_epoch=20,  
  39.            validation_set=({'input': testX}, {'target': testY}),  
  40.            snapshot_step=100, show_metric=True, run_id='convnet_mnist')  

 


关于conv_2d函数,在源码里是可以看到总共有14个参数,分别如下:

1.incoming: 输入的张量,形式是[batch, height, width, in_channels]
2.nb_filter: filter的个数
3.filter_size: filter的尺寸,是int类型
4.strides: 卷积操作的步长,默认是[1,1,1,1]
5.padding: padding操作时标志位,"same"或者"valid",默认是“same”
6.activation: 激活函数(ps:这里需要了解的知识很多,会单独讲)
7.bias: bool量,如果True,就是使用bias
8.weights_init: 权重的初始化
9.bias_init: bias的初始化,默认是0,比如众所周知的线性函数y=wx+b,其中的w就相当于weights,b就是bias
10.regularizer: 正则项(这里需要讲解的东西非常多,会单独讲)
11.weight_decay: 权重下降的学习率
12.trainable: bool量,是否可以被训练
13.restore: bool量,训练的模型是否被保存
14.name: 卷积层的名称,默认是"Conv2D"
 
关于max_pool_2d函数,在源码里有5个参数,分别如下:
1.incoming ,类似于conv_2d里的incoming
2.kernel_size:池化时核的大小,相当于conv_2d时的filter的尺寸
3.strides:类似于conv_2d里的strides
4.padding:同上
5.name:同上
 
看了这么多参数,好像有些迷糊,我先用一张图解释下每个参数的意义。
 

其中的filter就是
[1 0 1 
 0 1 0
 1 0 1],size=3,由于每次移动filter都是一个格子,所以strides=1.
 
关于最大池化可以看看下面这张图,这里面 strides=1,kernel_size =2(就是每个颜色块的大小),图中示意的最大池化(可以提取出显著信息,比如在进行文本分析时可以提取一句话里的关键字,以及图像处理中显著颜色,纹理等),关于池化这里多说一句,有时需要平均池化,有时需要最小池化。

下面说说其中的padding操作,做图像处理的人对于这个操作应该不会陌生,说白了,就是填充。比如你对图像做卷积操作,比如你用的3×3的卷积核,在进行边上操作时,会发现卷积核已经超过原图像,这时需要把原图像进行扩大,扩大出来的就是填充,基本都填充0。




Convolution Demo. Below is a running demo of a CONV layer. Since 3D volumes are hard to visualize, all the volumes (the input volume (in blue), the weight volumes (in red), the output volume (in green)) are visualized with each depth slice stacked in rows. The input volume is of size W1=5,H1=5,D1=3, and the CONV layer parameters are K=2,F=3,S=2,P=1. That is, we have two filters of size 3×3, and they are applied with a stride of 2. Therefore, the output volume size has spatial size (5 - 3 + 2)/2 + 1 = 3. Moreover, notice that a padding of P=1

 

 

General pooling. In addition to max pooling, the pooling units can also perform other functions, such as average pooling or even L2-norm pooling. Average pooling was often used historically but has recently fallen out of favor compared to the max pooling operation, which has been shown to work better in practice.

 
 
Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume.  Left: In this example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the volume depth is preserved.  Right: The most common downsampling operation is max, giving rise to  max pooling, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

 




















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7908217.html,如需转载请自行联系原作者


相关文章
|
12天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
20天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
383 7
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
68 17

热门文章

最新文章