Darkon

简介:

由于难以理解,深度学习经常被称为黑箱。有鉴于此,Neosapience 开发了开源工具包 Darkon,它可以更好地理解深度学习模型,进而调试故障,解释决策等等。目前 Darkon 适用于所有 Tensorflow 模型。

项目地址:http://darkon.io/


Darkon 是一个更好地理解深度学习模型的开源工具包。由于难以理解,深度学习经常被称为黑箱。但是,可解释性与可控性是深度学习模型商业化推广的关键。人们通常认为准备性数据集上实现的高精度足以将模型进行商业化推广,但实际情况却是经常在实际应用中遭受失败,并会导致极端案例的出现。进而,有必要在医疗诊断、金融决策等一些应用中解释结果以信任系统。我们希望 Darkon 可以帮助你理解已训练模型,进而调试故障,解释决策等等。


本文中,我们将提供轻易分析深度学习模型的功能,它适用于任何 Tensorflow 模型(稍后会支持其他模型)。影响值在通过训练样本理解模型方面非常有用。分值可用于过滤拉低测试表现的不良训练样本。优先考虑修复被错误标注的潜在实例,并调试训练和测试样本之间的不匹配分布很有帮助。在本版本中,我们添加了 Grad-CAM 和有指导的 Grad-CAM,这对于理解 CNN 模型的决策很有帮助。


我们会慢慢使轻松分析深度学习模型的技术应用到你现有的项目之中。更多功能也将很快公布。


Demo




该 demo 展示了影响值的实例使用。如果你选择预训练网络和一个特定的测试样本,你可以在预测中看到结果,以及有益或有害的训练样本。训练样本通过影响值被分类,其中最高值对应于有益的样本,最低值对应于有害的样本。


Demo 地址:https://darkon-demo.herokuapp.com/


依赖项


  • Tensorflow>=1.3.0:https://github.com/tensorflow/tensorflow


安装


只安装 Darkon



  
  
  1. pip install darkon


带有 TensorFlow CPU 的安装



  
  
  1. pip install darkon[tensorflow]


带有 TensorFlow GPU 的安装



  
  
  1. pip install darkon[tensorflow-gpu]

目录
相关文章
|
6月前
|
SQL 关系型数据库 MySQL
遇到mysql数据库死锁,你会怎么排查?
遇到mysql数据库死锁,你会怎么排查?
428 0
|
缓存 Java 数据库
java hashmap 缓存
引用:http://tonysmith.iteye.com/blog/1106247 一般是采用HashMap来作为缓存的存储结构,但Java没有全局变量的概念,怎么保证缓存中的数据不被垃圾回收器收集,而造成数据的丢失呢?         请问一般的缓存是怎样保证数据的独立性(即脱离垃圾回收器...
1005 0
|
9月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用合集之源MySQL表新增字段后,要同步这个改变到Elasticsearch的步骤是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
Java
java8学习:函数注意事项以及概念(结尾)
共享的可变数据 假设几个类同时都保存了指向某个列表的引用,由于使用了可变的共享数据结构,我们很难追踪程序中各个组成部分所发生的变化,如图 如果一个系统中不像上面图中表示的可以随意修改数据,它不修改任何数据,这样你就不会再收到任何由于对象修改了数据而导致的错误 如果一个方法既不修改它内嵌类的状态,也.
1369 0
|
3天前
|
人工智能 自然语言处理 Shell
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
仅用3分钟,百炼调用满血版Deepseek-r1 API,享受百万免费Token。阿里云提供零门槛、快速部署的解决方案,支持云控制台和Cloud Shell两种方式,操作简便。Deepseek-r1满血版在推理能力上表现出色,尤其擅长数学、代码和自然语言处理任务,使用过程中无卡顿,体验丝滑。结合Chatbox工具,用户可轻松掌控模型,提升工作效率。阿里云大模型服务平台百炼不仅速度快,还确保数据安全,值得信赖。
157353 24
深度评测 | 仅用3分钟,百炼调用满血版 Deepseek-r1 API,百万Token免费用,简直不要太爽。
|
5天前
|
人工智能 API 网络安全
用DeepSeek,就在阿里云!四种方式助您快速使用 DeepSeek-R1 满血版!更有内部实战指导!
DeepSeek自发布以来,凭借卓越的技术性能和开源策略迅速吸引了全球关注。DeepSeek-R1作为系列中的佼佼者,在多个基准测试中超越现有顶尖模型,展现了强大的推理能力。然而,由于其爆火及受到黑客攻击,官网使用受限,影响用户体验。为解决这一问题,阿里云提供了多种解决方案。
16991 37
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
5天前
|
并行计算 PyTorch 算法框架/工具
本地部署DeepSeek模型
要在本地部署DeepSeek模型,需准备Linux(推荐Ubuntu 20.04+)或兼容的Windows/macOS环境,配备NVIDIA GPU(建议RTX 3060+)。安装Python 3.8+、PyTorch/TensorFlow等依赖,并通过官方渠道下载模型文件。配置模型后,编写推理脚本进行测试,可选使用FastAPI服务化部署或Docker容器化。注意资源监控和许可协议。
1310 8
|
13天前
|
人工智能 搜索推荐 Docker
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手
DeepSeek R1 + LobeChat + Ollama:快速本地部署模型,创建个性化 AI 助手
3416 117
手把手教你使用 Ollama 和 LobeChat 快速本地部署 DeepSeek R1 模型,创建个性化 AI 助手

热门文章

最新文章