Streaming的原理:
是用Java实现一个包装用户程序的MapReduce程序,该程序负责调用MapReduce Java接口获取key/value对输入,创建一个新的进程启动包装的用户程序,将数据通过管道传递给包装的用户程序处理,然后调用MapReduce Java接口将用户程序的输出切分成key/value对输出。
Streaming优点:
1)开发效率高,便于移植只要按照标准输入输出格式进行编程,就可以满足hadoop要求。因此单机程序稍加改动就可以在集群上进行使用。 同样便于测试只要按照 cat input | mapper | sort | reducer > output 进行单机测试即可。 如果单机测试通过,大多数情况是可以在集群上成功运行的,只要控制好内存就好了。
2)提高程序效率。有些程序对内存要求较高,如果用java控制内存毕竟不如C/C++。
Streaming不足:
1)Hadoop Streaming默认只能处理文本数据,无法直接对二进制数据进行处理
2)Streaming中的mapper和reducer默认只能向标准输出写数据,不能方便地处理多路输出。
Streaming编程接口参数
Streaming编程接口默认有很多参数,这些参数的作用其实和我们用Java 开发MapReduce里面的驱动类有点相似。具体参数介绍:
下面是对各个参数的详细说明:
-input < path>:指定作业输入,path可以是文件或者目录,可以使用*通配符,-input选项可以使用多次指定多个文件或目录作为输入。
-output < path>:指定作业输出目录,path必须不存在,而且执行作业的用户必须有创建该目录的权限,-output只能使用一次。
-mapper:指定mapper可执行程序或Java类,必须指定且唯一。
-reducer:指定reducer可执行程序或Java类,必须指定且唯一。
-file, -cacheFile, -cacheArchive:分别用于向计算节点分发本地文件、HDFS文件和HDFS压缩文件。
-numReduceTasks:指定reducer的个数,如果设置-numReduceTasks 0或者-reducer NONE则没有reducer程序,mapper的输出直接作为整个作业的输出。
-jobconf | -D NAME=VALUE:指定作业参数,NAME是参数名,VALUE是参数值,可以指定的参数参考hadoop-default.xml。
-combiner:指定combiner Java类,对应的Java类文件打包成jar文件后用-file分发。
-partitioner:指定partitioner Java类,Streaming提供了一些实用的partitioner实现,参考KeyBasedFiledPartitoner和IntHashPartitioner。
-inputformat, -outputformat:指定inputformat和outputformat Java类,用于读取输入数据和写入输出数据,分别要实现InputFormat和OutputFormat接口。如果不指定,默认使用TextInputFormat和TextOutputFormat。
-cmdenv NAME=VALUE:给mapper和reducer程序传递额外的环境变量,NAME是变量名,VALUE是变量值。
-mapdebug, -reducedebug:分别指定mapper和reducer程序失败时运行的debug程序。
-verbose:指定输出详细信息,例如分发哪些文件,实际作业配置参数值等,可以用于调试。
本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5659406.html,如需转载请自行联系原作者