Hadoop概念学习系列之Java调用Shell命令和脚本,致力于hadoop/spark集群(三十六)

简介:

前言

  说明的是,本博文,是在以下的博文基础上,立足于它们,致力于我的大数据领域!

http://kongcodecenter.iteye.com/blog/1231177

http://blog.csdn.net/u010376788/article/details/51337312

http://blog.csdn.net/arkblue/article/details/7897396

 

 

第一种:普通做法

   首先,编号写WordCount.scala程序。

   然后,打成jar包,命名为WC.jar。比如,我这里,是导出到windows桌面。

   其次,上传到linux的桌面,再移动到hdfs的/目录。

   最后,在spark安装目录的bin下,执行

spark-submit \
> --class cn.spark.study.core.WordCount \
> --master local[1] \
> /home/spark/Desktop/WC.jar \
> hdfs://SparkSingleNode:9000/spark.txt \
> hdfs://SparkSingleNode:9000/WCout

 

 

 

 第二种:高级做法

  有时候我们在Linux中运行Java程序时,需要调用一些Shell命令和脚本。而Runtime.getRuntime().exec()方法给我们提供了这个功能,而且Runtime.getRuntime()给我们提供了以下几种exec()方法:

  不多说,直接进入。

  步骤一: 为了规范起见,命名为JavaShellUtil.java。在本地里写好

 

import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStream;
import java.io.InputStreamReader; 
import java.util.ArrayList; 
import java.util.List;


public class JavaShellUtil {
public static void main(String[] args) throws Exception {

String cmd="hdfs://SparkSingleNode:9000/spark.txt";
InputStream in = null; 

try { 
Process pro =Runtime.getRuntime().exec("sh /home/spark/test.sh "+cmd);
pro.waitFor(); 
in = pro.getInputStream(); 
BufferedReader read = new BufferedReader(new InputStreamReader(in)); 
String result = read.readLine(); 
System.out.println("INFO:"+result); 
} catch (Exception e) { 
e.printStackTrace(); 

}
}

 

 

package cn.spark.study.core
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

/**
* @author Administrator
*/
object WordCount { 

def main(args: Array[String]) { 
if(args.length < 2){
println("argument must at least 2")
System.exit(1)
}
val conf = new SparkConf()
.setAppName("WordCount") 
// .setMaster("local");//local就是 不是分布式的文件,即windows下和linux下
val sc = new SparkContext(conf)

val inputPath=args(0)
val outputPath=args(1)

val lines = sc.textFile(inputPath, 1)
val words = lines.flatMap { line => line.split(" ") } 
val pairs = words.map { word => (word, 1) } 
val wordCounts = pairs.reduceByKey { _ + _ }
wordCounts.collect().foreach(println)
wordCounts.repartition(1).saveAsTextFile(outputPath)
}
}

 

 

 

 

 

 

   步骤二:编写好test.sh脚本

spark@SparkSingleNode:~$ cat test.sh 
#!/bin/sh
/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \
--class cn.spark.study.core.WordCount \
--master local[1] \
/home/spark/Desktop/WC.jar \
$1 hdfs://SparkSingleNode:9000/WCout

 

 

 

  步骤三:上传JavaShellUtil.java,和打包好的WC.jar

spark@SparkSingleNode:~$ pwd
/home/spark
spark@SparkSingleNode:~$ ls
Desktop Downloads Pictures Templates Videos
Documents Music Public test.sh
spark@SparkSingleNode:~$ cd Desktop/
spark@SparkSingleNode:~/Desktop$ ls
JavaShellUtil.java WC.jar
spark@SparkSingleNode:~/Desktop$ javac JavaShellUtil.java 
spark@SparkSingleNode:~/Desktop$ java JavaShellUtil 
INFO:(hadoop,1)
spark@SparkSingleNode:~/Desktop$ cd /usr/local/hadoop/hadoop-2.6.0/

 

 

 

  步骤四:查看输出结果

 

spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ bin/hadoop fs -cat /WCout/par*
(hadoop,1)
(hello,5)
(storm,1)
(spark,1)
(hive,1)
(hbase,1)
spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$

  成功!

 

 关于

Shell 传递参数 

http://www.runoob.com/linux/linux-shell-passing-arguments.html  

 

 

  最后说的是,不局限于此,可以穿插在以后我们生产业务里的。作为调用它即可,非常实用!

 


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6055518.html,如需转载请自行联系原作者

相关文章
|
12天前
|
存储 分布式计算 资源调度
Hadoop入门基础(三):如何巧妙划分Hadoop集群,全面提升数据处理性能?
Hadoop入门基础(三):如何巧妙划分Hadoop集群,全面提升数据处理性能?
|
4天前
|
监控 Java 调度
【Java学习】多线程&JUC万字超详解
本文详细介绍了多线程的概念和三种实现方式,还有一些常见的成员方法,CPU的调动方式,多线程的生命周期,还有线程安全问题,锁和死锁的概念,以及等待唤醒机制,阻塞队列,多线程的六种状态,线程池等
26 6
【Java学习】多线程&JUC万字超详解
|
3天前
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
10 3
Hadoop集群配置https实战案例
|
4天前
|
机器学习/深度学习 分布式计算 安全
Hadoop集群常见报错汇总
这篇博客总结了Hadoop集群中可能遇到的各种常见错误,包括Kerberos认证问题、配置错误、权限问题等,并为每个问题提供了详细的错误复现、原因分析以及相应的解决方案。
20 1
Hadoop集群常见报错汇总
|
5天前
|
资源调度 分布式计算 运维
Hadoop集群资源管理篇-资源调度器
详细介绍了Hadoop集群资源管理中的资源调度器,包括资源分配的概念、大数据运维工程师如何管理集群工作负载、资源调度器的背景、Hadoop提供的FIFO、容量调度器和公平调度器三种资源调度器的概述以及它们之间的对比。
22 4
|
4天前
|
分布式计算 监控 Hadoop
监控Hadoop集群实战篇
介绍了监控Hadoop集群的方法,包括监控Linux服务器、Hadoop指标、使用Ganglia监控Hadoop集群、Hadoop日志记录、通过Hadoop的Web UI进行监控以及其他Hadoop组件的监控,并提供了相关监控工具和资源的推荐阅读链接。
16 2
|
9天前
|
机器学习/深度学习 存储 分布式计算
Hadoop高可用集群搭建
Hadoop高可用集群搭建
|
7天前
|
存储 分布式计算 负载均衡
|
10天前
|
存储 分布式计算 资源调度
Hadoop集群的扩展性与容错能力
【8月更文第28天】Hadoop 是一种用于处理和存储大规模数据集的开源软件框架。它由两个核心组件构成:Hadoop 分布式文件系统 (HDFS) 和 MapReduce 计算框架。Hadoop 的设计考虑了可扩展性和容错性,使其成为大规模数据处理的理想选择。
28 0
|
26天前
|
存储 分布式计算 Hadoop
下一篇
DDNS