[LeetCode] Dungeon Game 地牢游戏

简介:

The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of M x N rooms laid out in a 2D grid. Our valiant knight (K) was initially positioned in the top-left room and must fight his way through the dungeon to rescue the princess.

The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.

Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0's) or contain magic orbs that increase the knight's health (positive integers).

In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step.

Write a function to determine the knight's minimum initial health so that he is able to rescue the princess.

For example, given the dungeon below, the initial health of the knight must be at least 7 if he follows the optimal path RIGHT-> RIGHT -> DOWN -> DOWN.

-2 (K) -3 3
-5 -10 1
10 30 -5 (P)

Notes:

  • The knight's health has no upper bound.
  • Any room can contain threats or power-ups, even the first room the knight enters and the bottom-right room where the princess is imprisoned.

 

Credits:
Special thanks to @stellari for adding this problem and creating all test cases.

这道王子救公主的题还是蛮新颖的,我最开始的想法是比较右边和下边的数字的大小,去大的那个,但是这个算法对某些情况不成立,比如下面的情况:

1 (K) -3 3
0 -2 0
-3 -3 -3 (P)

如果按我的那种算法走的路径为 1 -> 0 -> -2 -> 0 -> -3, 这样的话骑士的起始血量要为5,而正确的路径应为 1 -> -3 -> 3 -> 0 -> -3, 这样骑士的骑士血量只需为3。无奈只好上网看大神的解法,发现统一都是用动态规划Dynamic Programming来做,建立一个和迷宫大小相同的二维数组用来表示当前位置出发的起始血量,最先初始化的是公主所在的房间的起始生命值,然后慢慢向第一个房间扩散,不断的得到各个位置的最优的起始生命值。递归方程为: 递归方程是dp[i][j] = max(1, min(dp[i+1][j], dp[i][j+1]) - dungeon[i][j]). 代码如下:

class Solution {
public:
    int calculateMinimumHP(vector<vector<int> > &dungeon) {
        int m = dungeon.size();
        int n = dungeon[0].size();
        int dp[m][n];
        dp[m - 1][n - 1] = max(1, 1 - dungeon[m - 1][n - 1]);
        for (int i = m - 2; i >= 0; --i) {
            dp[i][n - 1] = max(1, dp[i + 1][n - 1] - dungeon[i][n - 1]);
        }
        for (int j = n - 2; j >= 0; --j) {
            dp[m - 1][j] = max(1, dp[m - 1][j + 1] - dungeon[m - 1][j]);
        }
        for (int i = m - 2; i >= 0; --i) {
            for (int j = n - 2; j >= 0; --j) {
                dp[i][j] = max(1, min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]);
            }
        }
        return dp[0][0];
    }
};

本文转自博客园Grandyang的博客,原文链接:地牢游戏[LeetCode] Dungeon Game ,如需转载请自行联系原博主。

相关文章
|
1月前
|
算法
Leetcode第45题(跳跃游戏II)
这篇博客文章讨论了如何使用贪心算法解决LeetCode第45题“跳跃游戏II”,目的是找到使用最少跳跃次数到达数组末尾的策略。
75 8
Leetcode第45题(跳跃游戏II)
|
3月前
|
算法
LeetCode第55题跳跃游戏
LeetCode第55题"跳跃游戏"的解题方法,通过记录当前最远可达到的位置并判断每个位置是否可达以及能否到达末尾,有效解决了跳跃至数组末尾的可行性问题。
LeetCode第55题跳跃游戏
|
1月前
Leetcode第55题(跳跃游戏)
LeetCode第55题“跳跃游戏”要求判断在一个非负整数数组中,从第一个位置出发,是否能够到达最后一个位置,其中每个位置的元素代表可跳跃的最大长度。
27 0
|
3月前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
50 1
|
3月前
|
Python
【Leetcode刷题Python】174. 地下城游戏
LeetCode 174题 "地下城游戏" 的Python解决方案,使用动态规划算法计算骑士从左上角到右下角拯救公主所需的最低初始健康点数。
52 3
|
3月前
|
算法 索引 Python
【Leetcode刷题Python】55. 跳跃游戏
解决LeetCode "跳跃游戏"问题的Python实现代码,使用了贪心算法的思路。代码中初始化最远可到达位置 max_k,并遍历数组 nums,通过更新 max_k 来记录每次能跳到的最远位置,如果在任何时刻 max_k 大于或等于数组的最后一个索引,则返回 True,表示可以到达数组的末尾;如果当前索引 i 超出了 max_k,则返回 False,表示无法继续前进。时间复杂度为 O(n),空间复杂度为 O(1)。
50 1
|
3月前
|
算法
LeetCode第45题跳跃游戏 II
LeetCode第45题"跳跃游戏 II"的解题方法,通过一次循环和选择每个位置的最大可跳距离,有效减少了跳跃次数,简化了问题。
|
5月前
|
算法
力扣经典150题第三十八题:生命游戏
力扣经典150题第三十八题:生命游戏
43 0
|
5月前
|
算法
【经典LeetCode算法题目专栏分类】【第9期】深度优先搜索DFS与并查集:括号生成、岛屿问题、扫雷游戏
【经典LeetCode算法题目专栏分类】【第9期】深度优先搜索DFS与并查集:括号生成、岛屿问题、扫雷游戏
|
5月前
|
算法 机器人
【经典LeetCode算法题目专栏分类】【第5期】贪心算法:分发饼干、跳跃游戏、模拟行走机器人
【经典LeetCode算法题目专栏分类】【第5期】贪心算法:分发饼干、跳跃游戏、模拟行走机器人