Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
这道题让我们求最大子数组之和,并且要我们用两种方法来解,分别是O(n)的解法,还有用分治法Divide and Conquer Approach,这个解法的时间复杂度是O(nlgn),那我们就先来看O(n)的解法,定义两个变量res和curSum,其中res保存最终要返回的结果,即最大的子数组之和,curSum初始值为0,每遍历一个数字num,比较curSum + num和num中的较大值存入curSum,然后再把res和curSum中的较大值存入res,以此类推直到遍历完整个数组,可得到最大子数组的值存在res中,代码如下:
C++ 解法一:
class Solution { public: int maxSubArray(vector<int>& nums) { int res = INT_MIN, curSum = 0; for (int num : nums) { curSum = max(curSum + num, num); res = max(res, curSum); } return res; } };
Java 解法一:
public class Solution { public int maxSubArray(int[] nums) { int res = Integer.MIN_VALUE, curSum = 0; for (int num : nums) { curSum = Math.max(curSum + num, num); res = Math.max(res, curSum); } return res; } }
题目还要求我们用分治法Divide and Conquer Approach来解,这个分治法的思想就类似于二分搜索法,我们需要把数组一分为二,分别找出左边和右边的最大子数组之和,然后还要从中间开始向左右分别扫描,求出的最大值分别和左右两边得出的最大值相比较取最大的那一个,代码如下:
C++ 解法二:
class Solution { public: int maxSubArray(vector<int>& nums) { if (nums.empty()) return 0; return helper(nums, 0, (int)nums.size() - 1); } int helper(vector<int>& nums, int left, int right) { if (left >= right) return nums[left]; int mid = left + (right - left) / 2; int lmax = helper(nums, left, mid - 1); int rmax = helper(nums, mid + 1, right); int mmax = nums[mid], t = mmax; for (int i = mid - 1; i >= left; --i) { t += nums[i]; mmax = max(mmax, t); } t = mmax; for (int i = mid + 1; i <= right; ++i) { t += nums[i]; mmax = max(mmax, t); } return max(mmax, max(lmax, rmax)); } };
Java 解法二:
public class Solution { public int maxSubArray(int[] nums) { if (nums.length == 0) return 0; return helper(nums, 0, nums.length - 1); } public int helper(int[] nums, int left, int right) { if (left >= right) return nums[left]; int mid = left + (right - left) / 2; int lmax = helper(nums, left, mid - 1); int rmax = helper(nums, mid + 1, right); int mmax = nums[mid], t = mmax; for (int i = mid - 1; i >= left; --i) { t += nums[i]; mmax = Math.max(mmax, t); } t = mmax; for (int i = mid + 1; i <= right; ++i) { t += nums[i]; mmax = Math.max(mmax, t); } return Math.max(mmax, Math.max(lmax, rmax)); } }
本文转自博客园Grandyang的博客,原文链接:最大子数组[LeetCode] Maximum Subarray ,如需转载请自行联系原博主。