Implement pow(x, n).
这道题让我们求x的n次方,如果我们只是简单的用个for循环让x乘以自己n次的话,未免也把LeetCode上的想的太简单了,一句话形容图样图森破啊。OJ因超时无法通过,所以我们需要优化我们的算法,使其在更有效的算出结果来。我们可以用递归来折半计算,每次把n缩小一半,这样n最终会缩小到0,任何数的0次方都为1,这时候我们再往回乘,如果此时n是偶数,直接把上次递归得到的值算个平方返回即可,如果是奇数,则还需要乘上个x的值。还有一点需要引起我们的注意的是n有可能为负数,对于n是负数的情况,我们可以先用其绝对值计算出一个结果再取其倒数即可,代码如下:
解法一:
class Solution { public: double myPow(double x, int n) { if (n < 0) return 1 / power(x, -n); return power(x, n); } double power(double x, int n) { if (n == 0) return 1; double half = power(x, n / 2); if (n % 2 == 0) return half * half; return x * half * half; } };
还有一种写法可以只用一个函数即可,在每次递归中就检查n的正负,然后做相应的变换即可,代码如下:
解法二:
class Solution { public: double myPow(double x, int n) { if (n == 0) return 1; double half = myPow(x, n / 2); if (n % 2 == 0) return half * half; else if (n > 0) return half * half * x; else return half * half / x; } };
这道题还有迭代的解法,我们让i初始化为n,然后看i是否是2的倍数,是的话x乘以自己,否则res乘以x,i每次循环缩小一半,直到为0停止循环。最后看n的正负,如果为负,返回其倒数,参见代码如下:
解法三:
class Solution { public: double myPow(double x, int n) { double res = 1.0; for (int i = n; i != 0; i /= 2) { if (i % 2 != 0) res *= x; x *= x; } return n < 0 ? 1 / res : res; } };
本文转自博客园Grandyang的博客,原文链接:求x的n次方[LeetCode] Pow(x, n) ,如需转载请自行联系原博主。