[LeetCode] Unique Paths

简介: This is a fundamental DP problem. First of all, let's make some observations. Since the robot can only move right and down, when it arrives at a poin...

This is a fundamental DP problem. First of all, let's make some observations.

Since the robot can only move right and down, when it arrives at a point, there are only two possibilities:

  1. It arrives at that point from above (moving down to that point);
  2. It arrives at that point from left (moving right to that point).

Thus, we have the following state equations: suppose the number of paths to arrive at a point (i, j) is denoted as P[i][j], it is easily concluded that P[i][j] = P[i - 1][j] + P[i][j - 1].

The boundary conditions of the above equation occur at the leftmost column (P[i][j - 1] does not exist) and the uppermost row (P[i - 1][j] does not exist). These conditions can be handled by initialization (pre-processing) --- initialize P[0][j] = 1, P[i][0] = 1 for all valid i, j. Note the initial value is 1 instead of 0!

Now we can write down the following (unoptimized) code.

1 class Solution {
2     int uniquePaths(int m, int n) {
3         vector<vector<int> > path(m, vector<int> (n, 1));
4         for (int i = 1; i < m; i++)
5             for (int j = 1; j < n; j++)
6                 path[i][j] = path[i - 1][j] + path[i][j - 1];
7         return path[m - 1][n - 1];
8     }
9 };

As can be seen, the above solution runs in O(n^2) time and costs O(m*n) space. However, you may have observed that each time when we update path[i][j], we only need path[i - 1][j](at the same column) and path[i][j - 1] (at the left column). So it is enough to maintain two columns (the current column and the left column) instead of maintaining the full m*n matrix. Now the code can be optimized to have O(min(m, n)) space complexity.

 1 class Solution {
 2     int uniquePaths(int m, int n) {
 3         if (m > n) return uniquePaths(n, m); 
 4         vector<int> pre(m, 1);
 5         vector<int> cur(m, 1);
 6         for (int j = 1; j < n; j++) {
 7             for (int i = 1; i < m; i++)
 8                 cur[i] = cur[i - 1] + pre[i];
 9             swap(pre, cur);
10         }
11         return pre[m - 1];
12     }
13 };

Further inspecting the above code, we find that keeping two columns is used to recover pre[i], which is just cur[i] before its update. So there is even no need to use two vectors and one is just enough. Now the space is further saved and the code also gets much shorter.

 1 class Solution {
 2     int uniquePaths(int m, int n) {
 3         if (m > n) return uniquePaths(n, m);
 4         vector<int> cur(m, 1);
 5         for (int j = 1; j < n; j++)
 6             for (int i = 1; i < m; i++)
 7                 cur[i] += cur[i - 1]; 
 8         return cur[m - 1];
 9     }
10 }; 

Well, till now, I guess you may even want to optimize it to O(1) space complexity since the above code seems to rely on only cur[i] and cur[i - 1]. You may think that 2 variables is enough? Well, it is not. Since the whole cur needs to be updated for n - 1 times, it means that all of its values need to be saved for next update and so two variables is not enough.

目录
相关文章
|
搜索推荐 机器人 SEO
Leetcode 62. Unique Paths & 63. Unique Paths II
原谅我重新贴一遍题目描述,不是为了凑字数,而是为了让搜索引擎能索引到这篇文章,其实也是算一种简单的SEO。 简单描述下题目,有个机器人要从左上角的格子走到右下角的格子,机器人只能向下或者向右走,总共有多少种可能的路径?
35 0
|
Java
Leetcode 467. Unique Substrings in Wraparound String
大概翻译下题意,有个无限长的字符串s,是由无数个「abcdefghijklmnopqrstuvwxy」组成的。现在给你一个字符串p,求多少个p的非重复子串在s中出现了?
49 0
LeetCode contest 190 5418. 二叉树中的伪回文路径 Pseudo-Palindromic Paths in a Binary Tree
LeetCode contest 190 5418. 二叉树中的伪回文路径 Pseudo-Palindromic Paths in a Binary Tree
LeetCode 257. Binary Tree Paths
给定一个二叉树,返回所有从根节点到叶子节点的路径。 说明: 叶子节点是指没有子节点的节点。
57 0
LeetCode 257. Binary Tree Paths
|
机器人
LeetCode 63. Unique Paths II
机器人位于m x n网格的左上角(在下图中标记为“开始”)。 机器人只能在任何时间点向下或向右移动。 机器人正试图到达网格的右下角(在下图中标记为“完成”)。 现在考虑是否在网格中添加了一些障碍。 有多少条独特的路径?
98 0
LeetCode 63. Unique Paths II
|
机器人
LeetCode 62. Unique Paths
机器人位于m x n网格的左上角(在上图中标记为“开始”)。 机器人只能在任何时间点向下或向右移动。 机器人正试图到达网格的右下角(在下图中标记为“完成”)。 有多少可能的独特路径?
80 0
LeetCode 62. Unique Paths
|
数据安全/隐私保护 C++ Python
LeetCode 804. Unique Morse Code Words
LeetCode 804. Unique Morse Code Words
79 0
Leetcode-Easy 804. Unique Morse Code Words
Leetcode-Easy 804. Unique Morse Code Words
102 0
Leetcode-Easy 804. Unique Morse Code Words
LeetCode之First Unique Character in a String
LeetCode之First Unique Character in a String
116 0
|
算法 机器人 人工智能