OpenCV学习(22) opencv中使用kmeans算法

简介: kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用。      首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点。

kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html

下面学习一下opencv中kmeans函数的使用。

     首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点。

     随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束后,各个簇的中心位置。

     

//簇的数量
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
//采样点的数量
int i, sampleCount = rng.uniform(1, 1001);
Mat points(sampleCount, 1, CV_32FC2), labels;

clusterCount = MIN(clusterCount, sampleCount);
//中心点矩阵
Mat centers(clusterCount, 1, points.type());

printf("clusterCount=%d, sampleCount=%d\n", clusterCount, sampleCount);
//产生多高斯部分的随机采样点
for( k = 0; k < clusterCount; k++ )
    {
    Point center;
    center.x = rng.uniform(0, img.cols);
    center.y = rng.uniform(0, img.rows);
    Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
        k == clusterCount - 1 ? sampleCount :
        (k+1)*sampleCount/clusterCount);
    printf("rows start=%d rows end=%d\n", k*sampleCount/clusterCount, k == clusterCount - 1 ? sampleCount :
        (k+1)*sampleCount/clusterCount);

注意rng.fill函数,会以center点为中心,产生高斯分布的随机点(位置点),并把位置点保存在矩阵pointChunk中。
    //第三个参数中心,第四个参数偏移
    rng.fill(pointChunk, CV_RAND_NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
    }

//打乱points中值,第二个参数表示随机交换元素的数量的缩放因子,总的交换次数dst.rows*dst.cols*iterFactor,第三个参数是个随机发生器,决定选那两个元素交换

randShuffle(points, 1, &rng);

      kmeans函数中points为输入矩阵,其中存储的是采样点,labels也是一个一维矩阵,它的size和points一样,里面存储的是每个采样点执行kmeans算法后属于属于那一个簇,值为0到clusterCount-1,centers中存放的是kmeans算法结束后每个簇的中心位置。

      flags(第7个参数)为KMEANS_PP_CENTERS 表示使用 kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007]算法决定簇的初始中心,否则就是采用随机值的方法决定初始中心

     如果flags是CV_KMEANS_USE_INITIAL_LABELS,则需要初始化labels,就是初始指定点的分类。

     最后我们在图像中画出每个位置点对应的像素,中心位置用蓝色的圆圈表示。

//labels中放的是执行kmeans算法后sample中簇的索引
kmeans(points, clusterCount, labels,
    TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0),
    3, KMEANS_PP_CENTERS, centers);

img = Scalar::all(0);

for( i = 0; i < sampleCount; i++ )
    {
    int clusterIdx = labels.at<int>(i);
    Point ipt = points.at<Point2f>(i);
    circle( img, ipt, 2, colorTab[clusterIdx], CV_FILLED, CV_AA );
    }

cout<<"Center: \n"<<centers<<endl;

//用蓝色画出每个聚类的中心
//有bug,不让我直接用centers.at<Point2f>(i);,会异常

for( i = 0; i < clusterCount; i++ )
    {
    Point ipt = Point(centers.at<float>(i*2), centers.at<float>(i*2+1));
    circle( img, ipt, 5, Scalar(255,0,0),CV_FILLED, CV_AA );

    }
imshow("clusters", img);

下面图像是5个簇的kmeans聚类结果。

image

源代码参考工程:FirstOpenCV15

相关文章
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
14天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。