(转) Deep Learning Resources

简介:   转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning ResourcesPosted on May 13, 2015 VideosDeep Learning and Neur...

Videos

  1. Deep Learning and Neural Networks with Kevin Duh: course page
  2. NY Course by Yann LeCun: 2014 version2015 version
  3. NIPS 2015 Deep Learning Tutorial by Yann LeCun and Yoshua Bengio (slides)(mp4,wmv)
  4. ICML 2013 Deep Learning Tutorial by Yann Lecun (slides)
  5. Geoffery Hinton’s cousera course on Neural Networks for Machine Learning
  6. Stanford 231n Class: Convolutional Neural Networks for Visual Recognition (videosgithubsyllabussubredditprojectfinal reportstwitter)
  7. Large Scale Visual Recognition Challenge 2014, arxiv paper
  8. GTC Deep Learning 2015
  9. Hugo Larochelle Neural Networks classslides
  10. My youtube playlist
  11. Yaser Abu-Mostafa’s Learning from Data course (youtube playlist)
  12. Stanford CS224d: Deep Learning for Natural Language Processing: syllabus, youtube playlistredditlonger playlist
  13. Neural Networks for Machine Perception: vimeo
  14. Deep Learning for NLP (without magic): pagebetter pagevideo1video2youtube playlist
  15. Introduction to Deep Learning with Python: videoslidescode
  16. Machine Learning course with emphasis on Deep Learning by Nando de Freitas (youtube playlist), course page, torch practicals
  17. NIPS 2013 Deep Learning for Computer Vision Tutorial – Rob Fergus: videoslides
  18. Tensorflow Udacity mooc

Links

  1. Deeplearning.net
  2. NVidia’s Deep Learning portal
  3. My flipboard page

AMIs, Docker images & Install Howtos

  1. Stanford 231n AWS AMI:  image is cs231n_caffe_torch7_keras_lasagne_v2, AMI ID: ami-125b2c72, Caffe, Torch7, Theano, Keras and Lasagne are pre-installed. Python bindings of caffe are available. It has CUDA 7.5 and CuDNN v3.
  2. AMI for AWS EC2 (g2.2xlarge): ubuntu14.04-mkl-cuda-dl (ami-03e67874) in Ireland Region: page,  Installed stuffs: Intel MKL, CUDA 7.0, cuDNN v2, theano, pylearn2, CXXNET, Caffe, cuda-convnet2, OverFeat, nnForge, Graphlab Create (GPU), etc.
  3. Chef cookbook for installing the Caffe deep learning framework
  4. Public EC2 AMI with Torch and Caffe deep learning toolkits (ami-027a4e6a): page
  5. Install Theano on AWS (ami-b141a2f5 with CUDA 7): page
  6. Running Caffe on AWS Instance via Docker: pagedocsimage
  7. CVPR 2015 ITorch Tutorial (ami-b36981d8): pagegithubcheatsheet
  8. Torch/iTorch/Ubuntu 14.04 Docker image: docker pull kaixhin/torch
  9. Torch/iTorch/CUDA 7/Ubuntu 14.04 Docker image: docker pull kaixhin/cuda-torch
  10. AMI containing Caffe, Python, Cuda 7, CuDNN, and all dependencies. Its id is ami-763a311e (disk min 8G,system is 4.6G), howto
  11. My Dockerfiles at GitHub

Examples and Tutorials

  1. IPython Caffe Classification
  2. IPython Detection, arxiv paper, rcnn github, selective search
  3. Machine Learning with Torch 7
  4. Deep Learning Tutorials with Theano/Python, CNNgithub
  5. Torch tutorialstutorial&demos from Clement Fabaret
  6. Brewing Imagenet with Caffe
  7. Training an Object Classifier in Torch-7 on multiple GPUs over ImageNet
  8. Stanford Deep Learning Matlab based Tutorial (githubdata)
  9. DIY Deep Learning for Vision: A Hands on tutorial with Caffe (google doc)
  10. Tutorial on Deep Learning for Vision CVPR 2014: page
  11. Pylearn2 tutorialsconvolutional networkgetthedata
  12. Pylearn2 quickstartdocs
  13. So you wanna try deep learning? post from SnippyHollow
  14. Object Detection ipython nb from SnippyHollow
  15. Filter Visualization ipython nb from SnippyHollow
  16. Specifics on CNN and DBN, and more
  17. CVPR 2015 Caffe Tutorial
  18. Deep Learning on Amazon EC2 GPU with Python and nolearn
  19. How to build and run your first deep learning network (video, behind paywall)
  20. Tensorflow examples
  21. Illia Polosukhin’s Getting Started with Tensorflow – Part 1Part 2Part 3
  22. CNTK Tutorial at NIPS 2015
  23. CNTK: FFNCNNLSTMRNN
  24. CNTK Introduction and Book

People

  1. Geoffery Hinton: Homepage, Reddit AMA (11/10/2014)
  2. Yann LeCun: Homepage, NYU Research Page, Reddit AMA (5/15/2014)
  3. Yoshua Bengio: Homepage, Reddit AMA (2/27/2014)
  4. Clement Fabaret: Scene Parsing (paper), github, code page
  5. Andrej Karpathy: Homepagetwittergithubblog
  6. Michael I Jordan: Homepage, Reddit AMA (9/10/2014)
  7. Andrew Ng: Homepage, Reddit AMA (4/15/2015)
  8. Jurden Schmidhuber: Homepage, Reddit AMA (3/4/2015)
  9. Nando de Freitas: HomepageYouTube, Reddit AMA (12/26/2015)

Datasets

  1. ImageNet
  2. MNIST (Wikipedia), database
  3. Kaggle datasets
  4. Kitti Vision Benchmark Suite
  5. Ford Campus Vision and Lidar Dataset
  6. PCL Lidar Datasets
  7. Pylearn2 list

Frameworks and Libraries

  1. Caffe: homepagegithubgoogle group
  2. Torch: homepagecheatsheetgithubgoogle group
  3. Theano: homepagegoogle group
  4. Tensorflow: homepagegithubgoogle groupskflow
  5. CNTK: homepagegithubwiki
  6. CuDNN: homepage
  7. PaddlePaddle: homepagegithubdocsquick start
  8. fbcunn: github
  9. pylearn2: githubdocs
  10. cuda-convnet2: homepagecuda-convnetmatlab
  11. nnForge: homepage
  12. Deep Learning software links
  13. Torch vs. Theano post
  14. Overfeat: pagegithubpaperslidesgoogle group
  15. Keras: githubdocsgoogle group
  16. Deeplearning4j: pagegithub
  17. Lasagne: docsgithub

Topics

  1. Scene Understanding (CVPR 2013, Lecun) (slides), Scene Parsing (paper)
  2. Overfeat: Integrated Recognition, Localization and Detection using Convolutional Networks (arxiv)
  3. Parsing Natural Scenes and Natural Language with Recursive Neural Networks: page, ICML 2011 paper

Reddit

  1. Machine Learning Reddit page
  2. Computer Vision Reddit page
  3. Reddit: Neural Networks: newrelevant
  4. Reddit: Deep Learning: newrelevant

Books

  1. Learning Deep Architectures for AI, Bengio (pdf)
  2. Neural Nets and Deep Learning (htmlgithub)
  3. Deep Learning, Bengio, Goodfellow, Courville (html)
  4. Neural Nets and Learning Machines, Haykin, 2008 (amazon)

Papers

  1. ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012 (paper)
  2. Why does unsupervised pre-training help deep learning? (paper)
  3. Hinton06 – Autoencoders (paper)
  4. Deep Learning using Linear Support Vector machines (paper)

Companies

  1. Kaggle: homepage
  2. Microsoft Deep Learning Technology Center

Conferences

  1. ICML
  2. PAMITC Sponsored Conferences
  3. NIPS2015
Posted in Deep Learning Leave a reply

 

相关文章
|
算法 Go
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
|
机器学习/深度学习 编解码 算法
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
118 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
141 0
|
TensorFlow 算法框架/工具 Python
Building deep retrieval models
In the featurization tutorial we incorporated multiple features into our models, but the models consist of only an embedding layer. We can add more dense layers to our models to increase their expressive power.
265 0
|
大数据 知识图谱
Supervised learning demo
监督学习案例 规范 假设函数: 使用h(hypothesis, 假设)表示 输入(input value) 向量或者实数: 使用小写字母x等 矩阵: 使用大写字母X等 输出(output value) 向量或者实数: 使用小写字母y等 矩阵: 使用大写字母Y等 参数(Parameter...
715 0
|
机器学习/深度学习 人工智能 自然语言处理
18 Issues in Current Deep Reinforcement Learning from ZhiHu
深度强化学习的18个关键问题   from: https://zhuanlan.zhihu.com/p/32153603     85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向。
|
机器学习/深度学习 自然语言处理 数据挖掘
|
机器学习/深度学习
笔记:Wide & Deep Learning for Recommender Systems
笔记:Wide & Deep Learning for Recommender Systems 前两天自从看到一张图后: 就一直想读一下相关论文,这两天终于有时间把论文看了一下,就是这篇Wide & Deep Learning for Recommender Systems 首先简介,主要.
2394 0
|
机器学习/深度学习