笔记:Wide & Deep Learning for Recommender Systems

简介: 笔记:Wide & Deep Learning for Recommender Systems 前两天自从看到一张图后: 就一直想读一下相关论文,这两天终于有时间把论文看了一下,就是这篇Wide & Deep Learning for Recommender Systems 首先简介,主要.
笔记:Wide & Deep Learning for Recommender Systems

前两天自从看到一张图后:

就一直想读一下相关论文,这两天终于有时间把论文看了一下,就是这篇Wide & Deep Learning for Recommender Systems

首先简介,主要说了什么是Wide和Deep:
Wide就是:wide是指高维特征+特征组合的LR, 原文Generalized linear models with nonlinear feature transformations are widely used for large-scale regression and classification problems with sparse inputs. Memorization of feature interactions through a wide set of cross-product feature transformations are effective and interpretable, while generalization requires more feature engineering effort. 
Deep就是:深度神经网络,原文:With less feature engineering, deep neural networks can generalize better to unseen feature combinations through low-dimensional dense embeddings learned for the sparse features. However, deep neural networks with embeddings can over-generalize and recommend less relevant items when the user-item interactions are sparse and high-rank. 
然后就是本文介绍如何整合Wide和Deep

主要内容:
两个有意思的概念Memorization和Generalization:
Memorization can be loosely defined as learning the frequent co-occurrence of items or features and exploiting the correlation available in the historical data.
Generalization, on the other hand, is based on transitivity of correlation and explores new feature combinations that have never or rarely occurred in the past.

回顾LR和深度学习的方法。

介绍他们的实践,一些细节
目标App Acquisitions
对比join training和ensemble。ensemble是disjoint的。join training可以一起优化整个模型。
训练时候LR部分是FTRL+L1正则,深度学习用的AdaGrad?
训练数据有500 个billion。这是怎么算的,这么NB?
连续值先用累计分布函数CDF归一化到[0,1],再划档离散化。这个倒是不错的trick。

文章不长写的挺有意思的,大家可以下来细读一下。
相关文章
|
4月前
|
机器学习/深度学习 移动开发 算法
【博士每天一篇文献-模型】Deep learning incorporating biologically inspired neural dynamics and in memory
本文介绍了一种结合生物学启发的神经动力学和内存计算的深度学习方法,提出了脉冲神经单元(SNU),该单元融合了脉冲神经网络的时间动力学和人工神经网络的计算能力,通过实验分析显示,在手写数字识别任务中,基于SNU的网络达到了与循环神经网络相似或更高的准确性。
28 1
【博士每天一篇文献-模型】Deep learning incorporating biologically inspired neural dynamics and in memory
|
机器学习/深度学习 编解码 算法
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
123 0
|
机器学习/深度学习 人工智能 算法
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
127 0
《Understanding,generalisation,and transfer learning in deep neural networks》电子版地址
Understanding,generalisation,and transfer learning in deep neural networks
87 0
《Understanding,generalisation,and transfer learning in deep neural networks》电子版地址
《Spiking Neural Networks,the Next Generation of Machine Learning》电子版地址
Spiking Neural Networks,the Next Generation of Machine Learning
77 0
《Spiking Neural Networks,the Next Generation of Machine Learning》电子版地址
《The 8 Neural Network Architectures Machine Learning Resarchers Need to Learn》电子版地址
The 8 Neural Network Architectures Machine Learning Resarchers Need to Learn
86 0
《The 8 Neural Network Architectures Machine Learning Resarchers Need to Learn》电子版地址
《Deep Learning vs.Machine Learning-the essential differences you need to know!》电子版地址
Deep Learning vs.Machine Learning-the essential differences you need to know!
121 0
《Deep Learning vs.Machine Learning-the essential differences you need to know!》电子版地址
《Graph Neural Networks- Combing Deep Learning & Symbolic Reasoning》电子版地址
Graph Neural Networks- Combing Deep Learning & Symbolic Reasoning
92 0
《Graph Neural Networks- Combing Deep Learning & Symbolic Reasoning》电子版地址
|
机器学习/深度学习 搜索推荐 算法
【推荐系统论文精读系列】(十)--Wide&Deep Learning for Recommender Systems
具有非线性特征转化能力的广义线性模型被广泛用于大规模的分类和回归问题,对于那些输入数据是极度稀疏的情况下。通过使用交叉积获得的记忆交互特征是有效的而且具有可解释性,然后这种的泛化能力需要更多的特征工程努力。在进行少量的特征工程的情况下,深度神经网络可以泛化更多隐式的特征组合,通过从Sparse特征中学得低维的Embedding向量。可是,深度神经网络有个问题就是由于网络过深,会导致过度泛化数据。
188 0
【推荐系统论文精读系列】(十)--Wide&Deep Learning for Recommender Systems
|
机器学习/深度学习 搜索推荐 算法
SysRec2016 | Deep Neural Networks for YouTube Recommendations
YouTube有很多用户原创内容,其商业模式和Netflix、国内的腾讯、爱奇艺等流媒体不同,后者是采购或自制的电影,并且YouTube的视频基数巨大,用户难以发现喜欢的内容。本文根据典型的两阶段信息检索二分法:首先描述一种深度候选生成模型,接着描述一种分离的深度排序模型。
263 0
SysRec2016 | Deep Neural Networks for YouTube Recommendations