[家里蹲大学数学杂志]第036期泛函分析期末试题

简介: 1 (15 分) 设 $\mathcal{H}$ 是 Hilbert 空间, $l$ 为 $\mathcal{H}$ 上的一实值线性有界泛函, $C$ 是 $\mathcal{H}$ 中一闭凸子集, \[ f(v)=\frac{1}{2}||v||^2-l(v)\quad(\forall\ v\in C).

1 (15 分) 设 $\mathcal{H}$ 是 Hilbert 空间, $l$ 为 $\mathcal{H}$ 上的一实值线性有界泛函, $C$ 是 $\mathcal{H}$ 中一闭凸子集, \[ f(v)=\frac{1}{2}||v||^2-l(v)\quad(\forall\ v\in C). \] 求证:

(1) 对任意 $\mathcal{H}$ 上线性有界泛函 $g$, $\exists\ u_0\in \mathcal{H}$, 使得 $f(u_0)=g(u_0)$;

(2)$\exists\ u_1\in C$, 使得 \[ f(u_2)=\inf_{v\in C}f(v); \]

(3)讨论 $g,\ u_0,\ u_1$ 之间的关系.

 

2(15 分) 设 $\mathcal{H}$ 是 Hilbert 空间, $T:\mathcal{H}\to \mathcal{H}$ 是线性算子且满足 \[ (Tx,y)=(x,Ty)\quad (\forall\ x,y\in \mathcal{H}). \] 求证:

(1)$T\in \mathcal{L}(\mathcal{H})$;

(2)$T^*=T$, 此时称 $T$ 为自共轭算子;

(3)若 $\overline{R(A)}=\mathcal{H}$, 则对 $\forall\ y\in R(A)$, 方程 \[ Ax=y \] 存在唯一解.

 

3(15 分) 证明:

(1)若 $p\leq q$, 则 $l^p\subset l^q$;

(2)$l^\infty$ 不可分;

(3)$l^1$ 不自反.

 

4(10 分) 设 $\varphi\in C[0,1]$, $T:\ L^2[0,1]\to L^2[0,1]$ 是由 \[ (Tf)(x)=\varphi(x)\int_0^1\varphi(t)f(t)\ dt\quad(\forall\ f\in L^2[0,1]) \] 给出的线性算子. 求证:

(1)$T$ 是自共轭算子 (定义见题2);

(2)$\exists\ \lambda\geq 0$, 使得 $T^2=\lambda T$, 由此求出 $T$ 的谱半径 $r_\sigma(T)$.

 

 

5(10 分) 设 $\mathcal{X}$ 是自反的 Banach 空间, $A\subset \mathcal{X}$. 证明:

(1)$A$ 弱列紧的充分必要条件是 $A$ 有界;

(2) 若 $A$ 弱列紧的, 则 $A$ 的凸包 \[ co (A) =\left\{ \sum_{i=1}^n\lambda_ix_i;\ \sum_{i=1}^n \lambda_i=1,\ \lambda_i\geq 0,\ x_i\in A,\ i=1,2,\cdots, n,\ n\in \mathbb{N} \right\} \] 也是弱列紧的.

 

6(10 分) 证明:

(1)在 Hilbert 空间 $\mathcal{H}$ 中, $x_n\to x_0$ 的充分必要条件是 \[ ||x_n||\to ||x_0||,\quad x_n\rightharpoonup x_0; \]

(2)在 $L^2[0,1]$ 中, $f_n\to f$ 的充分必要条件是 \[ f_n\rightharpoonup f,\quad f_n^2\stackrel{*}{\rightharpoonup} f^2. \]

 

7(8 分) 设 $\mathcal{H}$ 是 Hilbert 空间, $\mathcal{H}_0$ 是 $\mathcal{H}$ 的闭线性子空间, $f_0$ 是 $\mathcal{H}_0$ 上的线性有界泛函. 证明: $\exists\ \mathcal{H}$ 上的线性有界泛函 $f$, 使得 \[ f(x)=f_0(x)\quad(\forall\ x\in \mathcal{H}_0), \] \[ ||f||=||f_0||. \]

 

 

8(8 分) 设 $\mathcal{X},\ \mathcal{Y}$ 是 Banach 空间, $T$ 是 $\mathcal{X}$ 到 $\mathcal{Y}$ 的线性算子, 又设对 $\forall\ g\in \mathcal{Y}^*$, $g(Tx)$ 是 $\mathcal{X}$ 上的线性有界泛函, 求证: $T$ 是连续的.

 

9(9 分) 设 $C[a,b]$ 是连续函数空间, 赋以最大值范数 \[ ||x||_\infty =\sup_{t\in [a,b]} |x(t)|\quad (\forall\ x\in C[a,b]). \] 设 $\{x_n\}\subset C[a,b]$ $x\in C[a,b]$. 求证: $x_n\rightharpoonup x$ 的充分必要条件是 \[ \lim_{n\to\infty}x_n(t)=x(t),\quad \forall\ t\in [a,b]\cap \mathbb{Q}, \] 且 \[ \sup_{n\geq 1}||x_n||_\infty<\infty. \]

 

应老师要求, 出了一份泛函分析期末试卷, 主要针对张恭庆泛函分析第二章. 自己写完后也感觉太难了. 不过还是保留了做个纪念. 下次修改后再发终结版.

目录
相关文章
|
Perl 关系型数据库 RDS
[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答
  1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ.
1138 0
|
Perl 资源调度
[家里蹲大学数学杂志]第392期中山大学2015年泛函分析考博试题回忆版
1. ($12'$) 求 $L^p(\bbR)$, $1\leq p\sigma}f_n(t)\rd t=0,\quad \forall\ \sigma>0. \eex$$ 试证: $$\bex f_n\to \delta,\mbox{ in }\mathcal{D}'(\bbR).
900 0
[家里蹲大学数学杂志]第393期中山大学2015年计算数学综合考试考博试题回忆版
试题有 6 个大题, 选作 4 题即可, 下面回忆的是其中的 4 题.   1. ($25'$) (1). 试证: $$\bex x,y>0,\ x\neq y\ra (x+y)\ln \frac{x+y}{2}0$, $b$ 为常数, 试证迭代格式 (大概如此) $$\bex x^{(k+1)...
988 0
|
Perl Windows 资源调度
[家里蹲大学数学杂志]第387期一套实变函数期末试题参考解答
  一. (本题 $40'$, 每小题 $8$ 分) 证明以下结论: (1). 设 $\scrA$ 是由 $[0,1]$ 上互不相交的正测度集构成的集族, 则 $\scrA$ 中至多有可数个集.
1022 0
|
关系型数据库 RDS Perl
[家里蹲大学数学杂志]第388期一套泛函分析期末试题参考解答
  1. ($20$ 分) 证明非线性积分方程 $$\bex x(t)+\lm \int_a^b K(t,s,x(s))\rd s=y(t),\quad \forall\ t\in [a,b] \eex$$ 在 $|\lm|$ 足够小时有唯一连续解.
1051 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答
  1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}...
1100 0
|
关系型数据库 Perl RDS
[家里蹲大学数学杂志]第322期赣南师范学院数学竞赛培训第11套模拟试卷
  数学分析部分     1. 已知函数 $f(x)=\ln x-ax$, 其中 $a$ 为常数. 如果 $f(x)$ 有两个零点 $x_1,x_2$. 试证: $x_1x_2>e^2$.
688 0
[家里蹲大学数学杂志]第248期东北师范大学2013年数学分析考研试题
1 计算 $$\bex \lim_{x\to \infty} \sex{\frac{4x+3}{4x-1}}^{2x-1}. \eex$$ 2计算 $$\bex \lim_{x\to \infty}\frac{1}{n}\sum_{i=1}^n \ln \frac{i\pi}{n}.
868 0
[家里蹲大学数学杂志]第261期安徽大学2008年高等代数考研试题参考解答
1 ($20'=5\times 4'$) 填空题. (1)设 $$\bex \sex{\ba{ccc} 1&1&-1\\ 0&2&2\\ 1&-1&0 \ea}X=\sex{\ba{ccc} 1&-1&1\\ 1&1&0\\ 2&1&1 \ea}, \eex$$ 则 $X=?$ 解答: $$\b...
954 0
[家里蹲大学数学杂志]第295期赣南师范学院数学竞赛培训01-10套模拟试卷参考解答
赣南师范学院数学竞赛培训第10套模拟试卷参考解答   赣南师范学院数学竞赛培训第09套模拟试卷参考解答   赣南师范学院数学竞赛培训第08套模拟试卷参考解答    赣南师范学院数学竞赛培训第07套模拟试卷参考解答   赣南师范学院数学竞赛培训第06套模拟试卷参考解答   赣...
879 0