[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答

简介:   1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ.

 

 

1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)

 

证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ. \eex$$ 则 $A\cap [n,n+1)$ 也可数. 据 $$\bex A=\cup_{n=-\infty}^\infty (A\cap [n,n+1)) \eex$$ 即知 $A$ 可数, 这是一个矛盾. 故有结论.

 

2. 设 $\sed{I_\al}_{\al\in A}$ 为一族长度大余零的区间. 证明: $\dps{E=\cup_{\al\in A}I_\al}$ 可测.

 

证明: 由题意, $I_\al$ 为区间, 而 $\dps{E=\cup_{\al\in A}I_\al}$ 为开集, 按照 $\bbR$ 中开集的构造, $E$ 是至多可数个互不相交的开区间 $J_i$ 的并. 区间 $J_i$ 可测, 而 $E$ 可测.

 

3. 设 $f$ 是可测集 $E$ 上的可测函数. 证明: 对任意整数 $p$, 函数 $|f|^p$ 也是 $E$ 的可测函数.

 

证明: $$\bex \forall\ c\in \bbR,\ E[|f|^p\geq c]=\sedd{\ba{ll} E,&c\leq 0\\ E[f<-c^\frac{1}{p}]\cup E[f>c^\frac{1}{p}],&c>0 \ea}. \eex$$

 

4. 设 $f(x)$ 是 $(0,1)$ 上的 Lebesgue 可积函数, 求极限 $$\bex \vlm{n}\int_0^1 \frac{1}{1+e^{nf(x)}}\rd x.\hfill\quad (15') \eex$$

 

解答: 由 $$\bex \frac{1}{1+e^{nf(x)}}\leq 1 \eex$$ 及有界控制收敛定理, $$\beex \bea \vlm{n}\int_0^1 \frac{1}{1+e^{nf(x)}}\rd x &=\int_0^1 \vlm{n}\frac{1}{1+e^{nf(x)}}\rd x\\ &=\int_{\sed{x\in (0,1);f(x)<0}} 1\rd x +\int_{\sed{x\in (0,1);f(x)=0}} \frac{1}{2}\rd x +\int_{\sed{x\in (0,1);f(x)>0}}0\rd x\\ &=m\sed{x\in (0,1);f(x)<0}| +\frac{1}{2}m\sed{x\in (0,1);f(x)=0}. \eea \eeex$$

 

5 设 $f_n,f,g$ 是可测集 $E$ 上的可测函数, 如果在 $E$ 上 $$\bex f_n\stackrel{m}{\rightarrow} f,\quad f_n\stackrel{m}{\rightarrow} g. \eex$$ 试证: $f=g,\ae x\in E$. ($15'$)

 

证明: 对 $\forall\ m\in \bbN$, 由 $$\beex \bea |f(x)-g(x)|\geq \frac{1}{m} &\ra |f_n(x)-f(x)|+|f_n(x)-g(x)|\geq \frac{1}{m}\\ &\ra |f_n(x)-f(x)|\geq \frac{1}{2m}\mbox{ 或 } |f_n(x)-g(x)|\geq \frac{1}{2m} \eea \eeex$$ 知 $$\bex E\sez{|f-g|\geq \frac{1}{m}} \subset E\sez{|f_n-f|\geq \frac{1}{2m}} \cup E\sez{|f_n-g|\geq \frac{1}{2m}}, \eex$$ 而 $$\bex mE\sez{|f-g|\geq \frac{1}{m}} \leq mE\sez{|f_n-f|\geq \frac{1}{2m}} +mE\sez{|f_n-g|\geq \frac{1}{2m}}. \eex$$ 令 $m\to\infty$, 利用 $$\bex f_n\stackrel{m}{\rightarrow} f,\quad f_n\stackrel{m}{\rightarrow} g. \eex$$ 即知 $$\bex mE\sez{|f-g|\geq \frac{1}{m}}=0, \eex$$ $$\beex \bea mE[|f-g|\neq 0]&=m\sex{\cup_{m=1}^\infty E\sez{|f-g|\geq\frac{1}{m}}}\\ &\leq \vsm{n}m E\sez{|f-g|\geq \frac{1}{m}}\\ &=0. \eea \eeex$$ 这即说明 $f=g,\ae x\in E$.

 

6. 设 $f$ 于 $(0,\infty)$ 上连续且 Lebesgue 可积, 证明: 广义 Riemann 积分 $\dps{\int_0^\infty f(x)\rd x}$ 收敛. ($15'$)

 

证明: $$\beex \bea \int_{(0,\infty)}|f(x)|\rd x &=\int_{(0,\infty)} \vlm{n}\chi_{(0,n)}(x)|f(x)|\rd x\\ &=\vlm{n}\int_{(0,\infty)} \chi_{(0,n)}(x)|f(x)|\rd x\quad\sex{Levi}\\ &=\vlm{n}\int_{(0,n)}|f(x)|\rd x. \eea \eeex$$ 此即 $$\bex \vlm{n}\int_{(n,\infty)}|f(x)|\rd x=0. \eex$$ 而有 $\forall\ \ve>0,\ \exists\ N\in\bbN,\st$ $$\beex \bea n\geq N&\ra \int_{(n,\infty)}|f(x)|\rd x<\ve\\ &\ra \sev{\int_{A_1}^{A_2}f(x)\rd x} \leq \int_{A_1}^{A_2}|f(x)|\rd x =\int_{[A_1,A_2]}|f(x)|\rd x \leq \int_N^\infty |f(x)|\rd x<\ve\\ &\quad\sex{\forall\ A_2>A_1>N}. \eea \eeex$$ 据 Cauchy 收敛准则, 广义 Riemann 积分 $\dps{\int_0^\infty f(x)\rd x}$ 收敛.

 

7. 设 $f$ 于 $[a,b]$ 可积且对任意区间 $I\subset [a,b]$ 有 $$\bex \int_If\rd m\geq |I|. \eex$$ 证明: $$\bex |f(x)\geq 1,\ae x\in [a,b].\quad(10') \eex$$

 

证明: 对 $\forall\ x\in (a,b)$, 定义 $$\bex f_n(x)=\frac{1}{2/n}\int_{-\frac{1}{n}}^\frac{1}{n}f(y)\rd m, \eex$$ 则由题意, $$\bex f_n(x)\geq 1,\quad \forall\ n>\frac{1}{\min\sed{x-a,b-x}}. \eex$$ 又由 $$\beex \bea \int_a^b |f_n(x)-f(x)|\rd x &=\int_a^b \sev{\frac{1}{2/n} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}}f(y)\rd m-f(x)}\rd x\\ &=\int_a^b \sev{\frac{1}{2/n}\int_{x-\frac{1}{n}}^{x+\frac{1}{n}} [f(y)-f(x)]\rd y}\rd x\\ &\leq \frac{n}{2}\int_a^b \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} |f(y)-f(x)|\rd y\rd x\\ &=\frac{n}{2}\int_a^b \int_{-\frac{1}{n}}^\frac{1}{n} |f(x+s)-f(x)|\rd s\rd x\quad\sex{y=x+s}\\ &=\frac{n}{2} \int_{-\frac{1}{n}}^\frac{1}{n} \int_a^b |f(x+s)-f(x)|\rd x\rd s\\ &\to 0\quad\sex{n\to\infty} \eea \eeex$$ (最后一步可由 Lusin 定理及该极限对连续函数成立得到) 知 $$\bex 1\leq \vlm{n}f_n(x)=f(x),\quad \ae x\in [a,b]. \eex$$

 

8. 请举出一个在 $[0,1]$ 上有界变差但不是绝对连续的函数 (不要求证明). ($10'$)

 

解答: 这很简单, 随便一个有间断点的单调函数就是有界变差函数, 但不是绝对连续函数. 

目录
相关文章
|
机器学习/深度学习 传感器 算法
【物理应用】基于FVM实现瞬态对流扩散附matlab代码
【物理应用】基于FVM实现瞬态对流扩散附matlab代码
|
12月前
|
存储 安全
猿大师办公助手与在线云文档网页编辑Office方面有什么不同?
猿大师办公助手作为一款网页编辑Office方案,与在线云文档方案不同,需要在客户端电脑安装猿大师办公助手插件及微软Office或者金山WPS软件,很多客户不理解为什么要这么麻烦,能否客户端电脑不安装任何插件,或者把直接插件安装在服务器上,客户端电脑直接就可以使用在线编辑Office功能?
266 105
|
算法 C语言 C++
C++语言学习指南:从新手到高手,一文带你领略系统编程的巅峰技艺!
【8月更文挑战第22天】C++由Bjarne Stroustrup于1985年创立,凭借卓越性能与灵活性,在系统编程、游戏开发等领域占据重要地位。它继承了C语言的高效性,并引入面向对象编程,使代码更模块化易管理。C++支持基本语法如变量声明与控制结构;通过`iostream`库实现输入输出;利用类与对象实现面向对象编程;提供模板增强代码复用性;具备异常处理机制确保程序健壮性;C++11引入现代化特性简化编程;标准模板库(STL)支持高效编程;多线程支持利用多核优势。虽然学习曲线陡峭,但掌握后可开启高性能编程大门。随着新标准如C++20的发展,C++持续演进,提供更多开发可能性。
186 0
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了Transformer在医学图像分割的进展,但计算需求限制了模型的深度和分辨率。为此,提出了可变形大核注意力(D-LKA Attention),它使用大卷积核捕捉上下文信息,通过可变形卷积适应数据模式变化。D-LKA Net结合2D和3D版本的D-LKA Attention,提升了医学分割性能。YOLOv8引入了可变形卷积层以增强目标检测的准确性。相关代码和任务配置可在作者博客找到。
|
缓存 Shell 网络安全
Github-推送代码报错“error:RPC failed;curl 56 OpenSSL SSL_read: SSL_ERROR_SYSCALL,errno 10054”解决方案
Github-推送代码报错“error:RPC failed;curl 56 OpenSSL SSL_read: SSL_ERROR_SYSCALL,errno 10054”解决方案
1000 0
|
运维 Shell 索引
【运维知识高级篇】超详细的Shell编程讲解5(普通数组+关联数组+抓阄项目)
【运维知识高级篇】超详细的Shell编程讲解5(普通数组+关联数组+抓阄项目)
213 0
|
存储 索引
带你读《Elastic Stack 实战手册》之18:——3.4.2.3.Search通过Kibana(1)
带你读《Elastic Stack 实战手册》之18:——3.4.2.3.Search通过Kibana(1)
194 0
|
人工智能 运维 分布式计算
阿里云大数据&AI 2022电子书合集
阿里云2022大数据&AI产品电子书合集,了解阿里云大数据&AI产品动态,欢迎免费下载电子书。
阿里云大数据&AI 2022电子书合集
|
SQL Oracle 关系型数据库
Kettle输出步骤(四)
Kettle输出步骤(四)
309 0
Kettle输出步骤(四)
|
SQL NoSQL Oracle
Neo4J 介绍及安装|学习笔记
快速学习 Neo4J 介绍及安装
672 0
Neo4J 介绍及安装|学习笔记