[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题

简介: 注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.

注意:

A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分).

B. 可能用的公式: $$\beex \bea 1.& \vGa_{ij}^k=\frac{1}{2}\sum g^{kl}\sex{\frac{\p g_{il}}{\p u^j} +\frac{\p g_{jl}}{\p u^i}-\frac{\p g_{ij}}{\p u^l}}.\\ 2.& \int \frac{\rd x}{a+b \cos x} =\frac{2}{\sqrt{a^2-b^2}}\arctan \sex{\sqrt{\frac{a-b}{a+b}}\tan \frac{x}{2}},\quad (a>b). \eea \eeex$$

 

14:00-16:30, Jan. 20, 2015

 

1. ($15$ points).

(1). Find the curvature and torsion of $\al(t)=(\cos t,\sin t,3t)$.

(2). Suppose $\gm$ is an arc length parametrized curve with the property that $$\bex |\gm(s)|\leq |\gm(s_0)|=R \eex$$ for all $s$ sufficiently close to $s_0$. Prove that the curvature $\kappa(s_0)\geq 1/R$.

 

2. ($10$ points) Suppose $x$ is coordinate patch such that $g_{11}=1$ and $g_{12}=0$. Prove that the $u^1$ - curve are geodesic.

 

3. ($20$ points) Let $X_N$ be the tangential component of the normal vector $N$ of a unit speed curve $\gm$ on a surface $M$. let $n$ be the unit normal vector to a coordinate patch in $M$.

(1). Prove ethat $X_N=N-\sef{N,n}n$ and $X_N$ is a vector field along $\gm$.

(2). Prove that the following are equivalent:

  (i). $X_N=0$.

  (ii). $\gm$ is a geodesic.

  (iii). $X_N$ is parallel along $\gm$.

 

4. ($20$ points).

(1). State the local Gauss-Bonnet formula.

(2). Let $x(u,v)=(\cos u\cos v,\cos u\sin v,\sin u)$ be the unit sphere. Let $R$ be the region bounded by the meridians $v=0, \pi/2$ and the circles of latitude $u=0, \pi/4$. Checking the local Gassu-Bonnet formula for the regin $R$.

 

5. ($30$ points) Consider the torus $T$ parametrized by $x:[0,2\pi]^2\to\bbR^3$ with $$\bex x(u,v)=((a+\cos u)\cos v,(a+\cos u)\sin v,\sin u),\quad a>1. \eex$$

(1). Compute the first and second fundamental forms.

(2). Compute the Gaussian curvature $K$ and the mean curvature $H$.

(3). Find the elliptic, hyperbolic and parabolic points.

(4). Checking the global Gauss-Bonnet formula for the torus $T$: $$\bex \iint_T K\rd A=2\pi \chi(T). \eex$$

(5). Show the Willmore inequality: $$\bex \iint_T H^2\rd A\geq 2\pi^2. \eex$$ 

 

从 herbertfederer 处看到, 他从 数学文化新浪微博 转的.

目录
相关文章
|
Python Perl
[家里蹲大学数学杂志]第042期《偏微分方程》试题
1 ( 15 分 ) 叙述二维 Laplace 方程 $u_{xx}+u_{yy}=0$ 的平均值公式 并用此证明 Laplace 方程的的极值原理.   2 ( 15 分 ) 用分离变量法求解下列问题: $$\bex \left\{\ba{lll} \frac{\p^2u}{\p t^2}-a...
823 0
|
Web App开发 移动开发
[家里蹲大学数学杂志]第044期《偏微分方程》试题
1. 设 $0\leq c(x)\leq M$, $f\in L^\infty(\Omega)$, $u\in H^1(\Omega)\cap L^\infty(\Omega)$ 是方程 \[ -\mbox{div }(|\nabla u|^{p-2}\nabla u)+c(x)|u|^{p-2}u=f \] 的弱下解, 其中 $p\geq 2$.
869 0
|
Perl
[家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$.
674 0
|
前端开发 rax Perl
[家里蹲大学数学杂志]第243期对合矩阵的两个性质
设 $n$ 阶矩阵 $A$ 满足 $A^2=E$. 证明: (1) $A$ 相似于形如 $\dps{\sex{\ba{cc} E_s&\\ &-E_{n-s} \ea}}$ 的矩阵; (2) 对于任何正整数 $m,k$, 都有 $$\bex \rank(A+E)^m+\rank(A-E)^k=n.
652 0
[家里蹲大学数学杂志]第413期插值不等式
设 $$\bex k\geq 2,\quad f\in C^k(\bbR),\quad M_j=\sup_{x\in\bbR}|f^{(j)}(x)|\ (j=0,1,\cdots,k). \eex$$ 则 $$\bex M_j\leq 2^\frac{j(k-j)}{2}M_0^{1-\frac{j}{k}}M_k^\frac{j}{k}\ (j=0,1,\cdots,k).
767 0
[家里蹲大学数学杂志]第218期正项级数的审敛法与人生态度
正项级数的审敛法与人生态度这学期物电学院电信专学生的高等数学 II 还是我来上. 紧接着上学期的课程, 我们开始了真正的无穷之旅. 考虑正项级数 $$\bee\label{ps} \sum_{n=1}^\infty u_n\quad(u_n>0).
804 0
[家里蹲大学数学杂志]第294期微分方程与数学物理问题习题集
第294期_微分方程与数学物理问题习题集   摘要: 本文给出了作者于 2011 年 10 月 10 日至 2011 年 10 月 31 日 看 Nail H. Ibragimov 的 时留下的习题全部解答.
1067 0
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
790 0
[家里蹲大学数学杂志]第442期一个积分不等式
设 $f$ 在 $[a,b]$ 上连续可微且 $f(a)=0$. 试证: $$\bex \int_a^b |f'(x)|^2\rd x\geq \frac{2}{(b-a)^2}\int_a^b |f(x)|^2\rd x.
679 0
|
资源调度 定位技术 Python
[家里蹲大学数学杂志]第299期丘成桐大学生数学竞赛2014年几何与拓扑个人赛试题
1.Let $X$ be the quotient space of $\bbS^2$ under the identifications $x\sim -x$ for $x$ in the equator $\bbS^1$.
888 0

热门文章

最新文章