[家里蹲大学数学杂志]第425期一个定积分的计算

简介: 试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...

试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$

解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\ln(t+3)}+\sqrt{\ln(9-t)}}(-\rd t)\quad\sex{9-x=t+3}\\ &=\int_2^4 \frac{\sqrt{\ln (x+3)}}{\sqrt{\ln(9-x)}+\sqrt{(x+3)}}\rd x\equiv J\\ &=\frac{1}{2}(I+J) =\frac{1}{2}\int_2^4 \rd x=1. \eea \eeex$$ 

目录
相关文章
[家里蹲大学数学杂志]第442期一个积分不等式
设 $f$ 在 $[a,b]$ 上连续可微且 $f(a)=0$. 试证: $$\bex \int_a^b |f'(x)|^2\rd x\geq \frac{2}{(b-a)^2}\int_a^b |f(x)|^2\rd x.
674 0
[家里蹲大学数学杂志]第433期一个极限
求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$    解答: 还记得对数不等式么: $$\bex \dfrac{x}{1+x}
1009 0
[家里蹲大学数学杂志]第427期与反对称矩阵有关的一个行列式
设 $A$ 是 $n$ 阶实反对称矩阵, $D$ 是对角元均大于零的实对角矩阵. 试证: $|D+A|>0$.   证明: (1). 实反对称矩阵 $A$ 的特征值为纯虚数或零: $$\beex \bea &\quad A\al=\lm\al\quad(\al\neq 0)\\ &\ra A...
631 0
|
Perl 关系型数据库 RDS
[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答
  1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ.
1140 0
[家里蹲大学数学杂志]第413期插值不等式
设 $$\bex k\geq 2,\quad f\in C^k(\bbR),\quad M_j=\sup_{x\in\bbR}|f^{(j)}(x)|\ (j=0,1,\cdots,k). \eex$$ 则 $$\bex M_j\leq 2^\frac{j(k-j)}{2}M_0^{1-\frac{j}{k}}M_k^\frac{j}{k}\ (j=0,1,\cdots,k).
761 0
[家里蹲大学数学杂志]第412期积分与极限
(云南大学). 已知 $$\bex 0\leq f\in C[0,\infty),\quad \int_0^\infty \frac{1}{f^2(x)}\rd x0,\ \exists\ X>0,\st A\geq 2X\ra \int_X^A\frac{1}{f^2(x)}\rd x0,\ \e...
829 0
|
Perl
[家里蹲大学数学杂志]第410期定积分难题
  1. (1). 设 $x\geq 0$, $n$ 为自然数, 证明: $$\bex x^n\geq n(x-1)+1; \eex$$ (2). $\forall\ n$, 求证: $$\bex \int_0^{1+\frac{2}{\sqrt{n}}}x^n\rd x>2; \eex$$ (3).
824 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1029 0
|
前端开发 rax Perl
[家里蹲大学数学杂志]第243期对合矩阵的两个性质
设 $n$ 阶矩阵 $A$ 满足 $A^2=E$. 证明: (1) $A$ 相似于形如 $\dps{\sex{\ba{cc} E_s&\\ &-E_{n-s} \ea}}$ 的矩阵; (2) 对于任何正整数 $m,k$, 都有 $$\bex \rank(A+E)^m+\rank(A-E)^k=n.
647 0
|
Perl
[家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$.
666 0

热门文章

最新文章