[再寄小读者之数学篇](2014-07-09 不可约多项式与重根)

简介: 设 $\mathbb{P}$ 为数域, 如果 $p_1(x),\cdots,p_r(x)$ 是数域 $\mathbb{P}$ 上的 $r$ 个两两不同的首相系数为 $1$ 的不可约多项式, 证明: $f(x)=p_1(x)\cdots p_r(x)$ 在数域 $\mathbb{P}$ 上无重根.

设 $\mathbb{P}$ 为数域, 如果 $p_1(x),\cdots,p_r(x)$ 是数域 $\mathbb{P}$ 上的 $r$ 个两两不同的首相系数为 $1$ 的不可约多项式, 证明: $f(x)=p_1(x)\cdots p_r(x)$ 在数域 $\mathbb{P}$ 上无重根.

 

证明: 用反证法. 若 $f(x)$ 有 $k(\geq 2)$ 重根 $x=a$, 则 $$\bee\label{poly_div} f(x)=p_1(x)\cdots p_r(x)=(x-a)^2g(x). \eee$$令 $x=a$ 有 $$\bex p_1(a)\cdots p_r(a)=0. \eex$$ 而至少有一个 $i$ 使得 $p_i(a)=0$, 于是 $$\bex (x-a)\mid p_i(x). \eex$$ 既然 $p_i(x)$ 首一、不可约, 我们有 $$\bex p_i(x)=x-a. \eex$$ 将上式代入 \eqref{poly_div}, 化简而有 $$\bex p_1(x)\cdots p_{i-1}(x)p_{i+1}(x)\cdots p_r(x)=(x-a)g(x). \eex$$ 同上论证又可发现 $$\bex \exists\ j\neq i,\st p_j(x)=x-a. \eex$$ 于是 $p_i(x), p_j(x)$ 相同. 这一矛盾说明假设不成立. 故有结论.

目录
相关文章
|
6月前
线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
58 1
|
测试技术
具体数学-第6课(下降阶乘幂一)
上节课讲到下降阶乘幂和差分运算,这节课继续讲它和差分的各种性质。
257 0
具体数学-第6课(下降阶乘幂一)
具体数学-第6课(下降阶乘幂二)
上节课讲到下降阶乘幂和差分运算,这节课继续讲它和差分的各种性质。
247 0
具体数学-第6课(下降阶乘幂二)
|
程序员
程序员数学(25)–概率初步
本文目录 1. 概念 2. 列举法求概率 3. 用频率估计概率
122 0
程序员数学(25)–概率初步
[再寄小读者之数学篇](2014-11-24 积分中值定理)
积分第一中值定理. 若 $f$ 在 $[a,b]$ 上连续, 则 $$\bex \exists\ \xi\in (a,b),\st \int_a^b f(x)\rd x=f(\xi)(b-a). \eex$$ 推广的积分第一中值定理.
679 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 数论)
1. 代数数: $\al\in\bbC$ 称为代数数, 如果它是某个系数为有理数的非零多项式的根. 2. 代数数全体构成一个域. (利用伙伴矩阵, 张量积很容易证明) 3. 代数整数: $\al\in\bbC$ 称为代数整数, 如果它是某个首一整系数多项式的根.
582 0
[再寄小读者之数学篇](2014-10-27 无穷多个无穷小量相乘还是无穷小量么?)
无穷多个无穷小量相乘还是无穷小量么?   解答: 不一定. 比如 $$\bex \ba{ll} \mbox{第 1 个:}&1,\cfrac{1}{2},\cfrac{1}{3},\cfrac{1}{4},\cdots;\\ \mbox{第 2 个:}&1,2,\cfrac{1}{3},\cfr...
767 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-07-17 行列式的计算)
试计算矩阵 $A=(\sin(\al_i+\al_j))_{n\times n}$ ($n\geq2$) 的行列式.   提示:  根据行列式的性质: (1) 行列式两列线性相关, 则行列式为零; (2) 若记第 $k$ 列为向量 $\al$ 的行列式为 $D(\al)$, 则 $$\b...
733 0
[再寄小读者之数学篇](2014-06-23 向量公式)
$$\bex \n\times({\bf a}\times{\bf b})=({\bf b}\cdot\n){\bf a} -({\bf a}\cdot\n){\bf b}+{\bf a}(\n\cdot{\bf b})-{\bf b}(\n\cdot{\bf a}).
553 0
[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛)
设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数. 证明: 由 $f\in L(\bbR)$ 知 $|f|\in L(\bbR)$ (see [程其襄, 张奠宙, 魏国强, 胡善文, ...
743 0