[詹兴致矩阵论习题参考解答]习题3.10

简介: 10. 设 $A,B$ 是同阶半正定矩阵, $0\leq s\leq 1$. 证明: $$\bex \sen{A^sB^s}_\infty \leq \sen{AB}_\infty^s. \eex$$     证明:   (1).

10. 设 $A,B$ 是同阶半正定矩阵, $0\leq s\leq 1$. 证明: $$\bex \sen{A^sB^s}_\infty \leq \sen{AB}_\infty^s. \eex$$

 

 

证明:

 

(1). 先证明: $A$ 的谱范数就是 $A$ 的最大奇异值. 事实上, $$\beex \bea \sen{A}_\infty^2 &=\max_{\sen{x}_2=1}\sen{Ax}_2^2\\ &=\max_{\sen{x}_2=1}x^*A^*Ax\\ &=\max_{\sen{x}_2=1}x^*VV^*A^*U^*UAVV^*x\\ &=\max_{\sen{y}_2=1}y^*\diag(s_1^2,\cdots,s_p^2)y\quad\sex{y=V^*x}\\ &=\max_{\sen{y}_2=1}\sum_{i=1}^p s_i^2|y_i|^2\\ &=s_1^2. \eea \eeex$$

 

(2). 往证题目. $$\beex \bea \sen{A^sB^s}_\infty^2 &=\lm_1(B^sA^sA^sB^s)\\ &=\lm_1(A^{2s}B^{2s})\\ &\leq \sez{\lm_1(A^2B^2)}^s\quad\sex{\mbox{定理 3.25}}\\ &=\sez{\lm_1(BAAB)}^s\\ &=[\sen{AB}_\infty^2]^s. \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.1
1. (Maybee) 设 $A$ 是一个树符号模式. 证明:   (1). 若 $A$ 的每个简单 $2$-圈都是正的, 则对于任何 $B\in Q(A)$, 存在可逆的实对角矩阵 $D$ 使得 $D^{-1}AD$ 为对称矩阵.
631 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
559 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
742 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 $A$ 是个不可约奇异 $M$-矩阵, 则存在正向量 $x$ 满足 $Ax=0$.       证明: 由 $A$ 为 $M$-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
616 0
|
vr&ar
[詹兴致矩阵论习题参考解答]习题6.6
6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.
531 0
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
540 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.5
5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.
540 0
|
Perl
[詹兴致矩阵论习题参考解答]习题5.2
2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty
553 0
[詹兴致矩阵论习题参考解答]习题4.17
17. (Ando-Zhan) 设 $A,B\in M_n$ 半正定, $\sen{\cdot}$ 是一个酉不变范数, 则 $$\bex \sen{(A+B)^r}\leq \sen{A^r+B^r},\quad (0
765 0
[詹兴致矩阵论习题参考解答]习题4.15
15. (Fan-Hoffman) 设 $A,H\in M_n$, 其中 $H$ 为 Hermite 矩阵, 则 $$\bex \sen{A-\Re A}\leq \sen{A-H} \eex$$ 对任何酉不变范数成立.
593 0