[詹兴致矩阵论习题参考解答]习题5.2

简介: 2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty

2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty<1. \eex$$ 证明: $$\bex \dim \im A=\dim \im B. \eex$$

 

 

证明: 用反证法. 不妨设 $\dim \im A<\dim \im B$, 则 $$\beex \bea n&=\dim \im A+\dim \ker A\\ &<\dim \im B+\dim \ker A\\ &=\dim (\im B+\ker A)+\dim (\im B\cap \ker A)\\ &\leq n+\dim (\im B\cap \ker A). \eea \eeex$$ 如此, $$\bex \dim (\im B\cap \ker A)>0, \eex$$ $$\bex \exists\ 0\neq y\in \bbC^n,\st y=Bx,\quad Ay=0. \eex$$ 而 $$\bex (A-B)y=-By =-B(Bx) =-B^2x =-Bx =-y. \eex$$ 这说明 $-1$ 为 $A-B$ 的一个特征值, $$\bex \sen{A-B}_\infty=\max_i|\lm_i(A-B)|=1. \eex$$ 这是一个矛盾. 故有结论.

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.6
6. 举例说明: 存在那样的实方阵 $A$, $A$ 的零元素的个数大于 $A$ 的 Jordan 标准形的零元素的个数.       解答: 想法就是利用第 5 节的 Jordan 标准形的组合刻画.
661 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
777 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.1
1. 怎样的非负矩阵可逆并且其逆也非负?       解答: 设 $A\geq0$ 可逆, 且其逆 $A^{-1}=B\geq 0$. 则 $$\bex I_n=AB=BA. \eex$$ 对 $A$ 的第 $i$ ($1\leq i\leq n$) 列, 由 $A$ 可逆知 $$\bex \exists\ j,\st a_{ij}>0.
524 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
742 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.5
5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.
556 0
[詹兴致矩阵论习题参考解答]习题4.13
13. (Bhatia-Davis) 设 $A,B,X\in M_n$, 则 $$\bex \sen{AXB^*}\leq \frac{1}{2}\sen{A^*AX+XB^*B} \eex$$ 对任何酉不变范数成立.
533 0
[詹兴致矩阵论习题参考解答]习题4.7
7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j
711 0
[詹兴致矩阵论习题参考解答]习题3.6
6. 设 $A,B\in M_n$, $A$ 是正定矩阵, $B$ 是 Hermite 矩阵. 则 $$\bex A+B\mbox{ 正定当且仅当 }\lm_j(A^{-1}B)>-1,\quad j=1,\cdots,n.
550 0
[詹兴致矩阵论习题参考解答]习题3.3
3. (Aronszajn) 设 $$\bex C=\sex{\ba{cc} A&X\\ X^*&B \ea} \eex$$ 为 Hermite 矩阵, $C\in M_n$, $A\in M_k$. 设 $A,B,C$ 的特征值分别为 $\al_1\geq \cdots\geq \al_k$, $...
646 0
[詹兴致矩阵论习题参考解答]习题3.4
4. 设 $x,y,u\in\bbR^n$ 的分量都是递减的. 证明:   (1). 若 $x\prec y$ 则 $\sef{x,u}\leq \sef{y,u}$.   (2). 若 $x\prec_w y$ 且 $u\in\bbR^n_+$, 则 $\sef{x,u}\leq \sef{y,u}$.
526 0