[詹兴致矩阵论习题参考解答]习题5.2

简介: 2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty

2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty<1. \eex$$ 证明: $$\bex \dim \im A=\dim \im B. \eex$$

 

 

证明: 用反证法. 不妨设 $\dim \im A<\dim \im B$, 则 $$\beex \bea n&=\dim \im A+\dim \ker A\\ &<\dim \im B+\dim \ker A\\ &=\dim (\im B+\ker A)+\dim (\im B\cap \ker A)\\ &\leq n+\dim (\im B\cap \ker A). \eea \eeex$$ 如此, $$\bex \dim (\im B\cap \ker A)>0, \eex$$ $$\bex \exists\ 0\neq y\in \bbC^n,\st y=Bx,\quad Ay=0. \eex$$ 而 $$\bex (A-B)y=-By =-B(Bx) =-B^2x =-Bx =-y. \eex$$ 这说明 $-1$ 为 $A-B$ 的一个特征值, $$\bex \sen{A-B}_\infty=\max_i|\lm_i(A-B)|=1. \eex$$ 这是一个矛盾. 故有结论.

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.1
1. (Maybee) 设 $A$ 是一个树符号模式. 证明:   (1). 若 $A$ 的每个简单 $2$-圈都是正的, 则对于任何 $B\in Q(A)$, 存在可逆的实对角矩阵 $D$ 使得 $D^{-1}AD$ 为对称矩阵.
623 0
[詹兴致矩阵论习题参考解答]习题7.2
2. 证明引理 7.13.       证明: 用反证法. 若对任一置换阵 $P$, $PA$ 的对角元都至少有一个为零, 则 $A$ 的每条对角线至少含有一个零元素. 由 Frobenius-K\"onig 定理, $A$ 有一个 $r\times s$ 阶的零子矩阵, $r+s=n+1$.
591 0
[詹兴致矩阵论习题参考解答]习题6.13
13. (Sinkhorn) 设 $A$ 是一个方的正矩阵, 则存在对角元素为正数的两个对角矩阵 $D_1$ 和 $D_2$ 使得 $D_1AD_2$ 为双随机矩阵 (doubly stochastic matrix).
578 0
[詹兴致矩阵论习题参考解答]习题6.15
15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...
560 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
504 0
[詹兴致矩阵论习题参考解答]习题6.2
2. 设 $A$ 是个非负方阵且存在一个正整数 $p$ 使得 $A^p>0$, 则对所有正整数 $q\geq p$, $A^q>0$.       证明: 不妨设 $n\geq 2$. 由定理 6.
565 0
[詹兴致矩阵论习题参考解答]习题4.6
6. 设 $A,B\in M_n$ 半正定, 则 $$\bex s_j(A-B)\leq s_j\sex{ \sex{\ba{cc} A&0\\ 0&B \ea}},\quad j=1,\cdots,n.
555 0
|
Perl
[詹兴致矩阵论习题参考解答]习题4.3
3. $G\in M_n$ 称为一个秩 $k$ 部分等距矩阵, 若 $$\bex s_1(G)=\cdots=s_k(G)=1,\quad s_{k+1}(G)=\cdots=s_n(G)=0. \eex$$ 证明对 $X\in M_n$, $$\bex \sum_{j=1}^k s_j(X) =\...
663 0
[詹兴致矩阵论习题参考解答]习题4.15
15. (Fan-Hoffman) 设 $A,H\in M_n$, 其中 $H$ 为 Hermite 矩阵, 则 $$\bex \sen{A-\Re A}\leq \sen{A-H} \eex$$ 对任何酉不变范数成立.
585 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
497 0