Processing math: 100%

[詹兴致矩阵论习题参考解答]习题3.11

简介: 11. (Ky Fan) 对于 AMn, 记 A=(A+A)/2. 证明: \bex\lm(A)\lm(A),\eex
其中 \lm(A) 表示 A 的特征值作成的向量, \lm(A) 表取 A 的特征值的实部所得向量.

11. (Ky Fan) 对于 AMn, 记 A=(A+A)/2. 证明: \bex\lm(A)\lm(A),\eex

其中 \lm(A) 表示 A 的特征值作成的向量, \lm(A) 表取 A 的特征值的实部所得向量.

 

 

证明:

 

(1). 先证明对 Hermite 阵 H, 若它的特征值为 \bex\lm1\lmn,\eex

\bexki=1\lmi=max\senxi=1i=1,,kki=1\sefHxi,xi.\eex
事实上, 由 H 为 Hermite 阵知存在酉阵 U, 使得 \bexUHU=\diag(\lm1,,\lmn).\eex
若记 U=(u1,,un), 则 \bexki=1\sefHui,ui=ki=1\lmi.\eex
另一方面, 对任一适合 \senxi=1 的向量组 x1,,xk, 可设 \bexxi=nj=1aijuj,nj=1|aij|2=1,\eex
\beex \bea Ax_i&=\sum_{j=1}^n a_{ij}\lm_ju_j,\\ \sef{Ax_i,x_i}&=\sef{ \sum_{j=1}^n a_{ij}\lm_ju_j,\sum_{l=1}^n a_{il}u_l}\\ &=\sum_{j,l=1}^n a_{ij}\bar a_{il}\lm_j\sef{u_j,u_l}\\ &=\sum_{j=1}^n a_{ij}\bar a_{ij} \lm_j\\ &=\sum_{j=1}^n |a_{ij}|^2 \lm_j\\ &=\sum_{j=1}^n |a_{ij}|^2 \lm_k +\sum_{j=1}^n |a_{ij}|^2 (\lm_j-\lm_k)\\ &=\lm_k +\sum_{j=1}^k |a_{ij}|^2 (\lm_j-\lm_k) +\sum_{j=k+1}^n |a_{ij}|^2 (\lm_j-\lm_k)\\ &\leq \lm_k +\sum_{j=1}^k |a_{ij}|^2 (\lm_j-\lm_k),\\ \sum_{i=1}^k \sef{Ax_i,x_i} &\leq k\lm_k +\sum_{i=1}^k \sum_{j=1}^k |a_{ij}|^2(\lm_j-\lm_k)\\ &\leq k\lm_k+\sum_{j=1}^k (\lm_j-\lm_k)\sum_{i=1}^k |a_{ij}|^2\\ &\leq k\lm_k+\sum_{j=1}^k (\lm_j-\lm_k)\\ &=\sum_{j=1}^k \lm_j. \eea \eeex

 

(2). 再证题目. 由 AMn 及 Schur 酉三角化定理, 存在酉阵 V 使得 \bex V^*AV=\sex{\ba{ccc} \lm_1(A)&&*\\ &\ddots&\\ &&\lm_n(A) \ea}. \eex

V=(v1,,vn), 则 \bex\sefAvi,vi=\lmi(A).\eex
于是对 1kn, \beex \bea \sum_{i=1}^k \Re \lm_i(A) &=\sum_{i=1}^k \frac{\lm_i(A)+\overline{\lm_i(A)}}{2}\\ &=\sum_{i=1}^k \frac{1}{2}\sef{Av_i,v_i} +\frac{1}{2} \overline{\sef{Av_i,v_i}}\\ &=\sum_{i=1}^k \frac{1}{2}\sef{Av_i,v_i} +\frac{1}{2}\sef{A^*v_i,v_i}\quad\sex{\overline{\sef{Av_i,v_i}} =\sef{v_i,Av_i}=\sef{A^*v_i,v_i}}\\ &=\sum_{i=1}^k \sef{\frac{A+A^*}{2}v_i,v_i}\\ &=\sum_{i=1}^k \sef{\Re A v_i,v_i}\\ &\leq \sum_{i=1}^k \lm_i(\Re A)\quad\sex{\mbox{由 (1)}}. \eea \eeex

目录
打赏
0
0
0
0
15
分享
相关文章
[詹兴致矩阵论习题参考解答]习题7.6
6. 举例说明: 存在那样的实方阵 A, A 的零元素的个数大于 A 的 Jordan 标准形的零元素的个数.       解答: 想法就是利用第 5 节的 Jordan 标准形的组合刻画.
670 0
[詹兴致矩阵论习题参考解答]习题7.2
2. 证明引理 7.13.       证明: 用反证法. 若对任一置换阵 P, PA 的对角元都至少有一个为零, 则 A 的每条对角线至少含有一个零元素. 由 Frobenius-K\"onig 定理, A 有一个 r×s 阶的零子矩阵, r+s=n+1.
667 0
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
487 0
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 A 是个不可约奇异 M-矩阵, 则存在正向量 x 满足 Ax=0.       证明: 由 AM-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
645 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 A 是个不可约非负方阵, 则函数 \bexf(t)=ρ[tA+(1t)AT]\eex
[0,1/2] 上递增, 在 [1/2,1] 上递减.
530 0
[詹兴致矩阵论习题参考解答]习题5.1
1. AMn 称为正交投影矩阵如果 A 是 Hermite 矩阵且幂等: \bexA=A=A2.\eex
证明: 若 A,BMn 为正交投影矩阵, 则 \senAB1.
729 0
[詹兴致矩阵论习题参考解答]习题5.5
5. (Friedland) 给定 AMn, \lmi\bbC, i=1,,n. 证明: 存在对角矩阵 DMn 使得 σ(A+D)=\sed\lm1,,\lmn, 并且满足上述条件的对角矩阵 D 只有有限多个.
569 0
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
754 0
[詹兴致矩阵论习题参考解答]习题4.14
14. 设 A,BMn, 则对 Mn 上的任何酉不变范数有 $$\bex \frac{1}{2}\sen{\sex{\ba{cc} A+B&0\\ 0&A+B \ea}}\leq \sen{\sex{\ba{cc} A&0\\ 0&B \ea}} \leq \sen{\sex{\ba{cc} |A|+|B|&0\\ 0&0 \ea}}.
681 0
[詹兴致矩阵论习题参考解答]习题4.9
9. 设 \senMn 上的酉不变范数, 则 \sen 是次可乘当且仅当 \bex\sen\diag(1,0,,0)1.\eex
      证明: \ra: 若 \sen 次可乘, ...
613 0
下一篇
oss创建bucket