[詹兴致矩阵论习题参考解答]习题3.11

简介: 11. (Ky Fan) 对于 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 证明: $$\bex \Re \lm(A)\prec \lm(\Re A), \eex$$ 其中 $\lm(A)$ 表示 $A$ 的特征值作成的向量, $\Re\lm(A)$ 表取 $A$ 的特征值的实部所得向量.

11. (Ky Fan) 对于 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 证明: $$\bex \Re \lm(A)\prec \lm(\Re A), \eex$$ 其中 $\lm(A)$ 表示 $A$ 的特征值作成的向量, $\Re\lm(A)$ 表取 $A$ 的特征值的实部所得向量.

 

 

证明:

 

(1). 先证明对 Hermite 阵 $H$, 若它的特征值为 $$\bex \lm_1\geq \cdots\geq \lm_n, \eex$$ 则 $$\bex \sum_{i=1}^k \lm_i =\max_{\sen{x_i}=1\atop i=1,\cdots,k} \sum_{i=1}^k \sef{Hx_i,x_i}. \eex$$ 事实上, 由 $H$ 为 Hermite 阵知存在酉阵 $U$, 使得 $$\bex U^*HU=\diag(\lm_1,\cdots,\lm_n). \eex$$ 若记 $U=(u_1,\cdots,u_n)$, 则 $$\bex \sum_{i=1}^k \sef{Hu_i,u_i}=\sum_{i=1}^k \lm_i. \eex$$ 另一方面, 对任一适合 $\sen{x_i}=1$ 的向量组 $x_1,\cdots,x_k$, 可设 $$\bex x_i=\sum_{j=1}^n a_{ij}u_j,\quad \sum_{j=1}^n |a_{ij}|^2=1, \eex$$ 而 $$\beex \bea Ax_i&=\sum_{j=1}^n a_{ij}\lm_ju_j,\\ \sef{Ax_i,x_i}&=\sef{ \sum_{j=1}^n a_{ij}\lm_ju_j,\sum_{l=1}^n a_{il}u_l}\\ &=\sum_{j,l=1}^n a_{ij}\bar a_{il}\lm_j\sef{u_j,u_l}\\ &=\sum_{j=1}^n a_{ij}\bar a_{ij} \lm_j\\ &=\sum_{j=1}^n |a_{ij}|^2 \lm_j\\ &=\sum_{j=1}^n |a_{ij}|^2 \lm_k +\sum_{j=1}^n |a_{ij}|^2 (\lm_j-\lm_k)\\ &=\lm_k +\sum_{j=1}^k |a_{ij}|^2 (\lm_j-\lm_k) +\sum_{j=k+1}^n |a_{ij}|^2 (\lm_j-\lm_k)\\ &\leq \lm_k +\sum_{j=1}^k |a_{ij}|^2 (\lm_j-\lm_k),\\ \sum_{i=1}^k \sef{Ax_i,x_i} &\leq k\lm_k +\sum_{i=1}^k \sum_{j=1}^k |a_{ij}|^2(\lm_j-\lm_k)\\ &\leq k\lm_k+\sum_{j=1}^k (\lm_j-\lm_k)\sum_{i=1}^k |a_{ij}|^2\\ &\leq k\lm_k+\sum_{j=1}^k (\lm_j-\lm_k)\\ &=\sum_{j=1}^k \lm_j. \eea \eeex$$

 

(2). 再证题目. 由 $A\in M_n$ 及 Schur 酉三角化定理, 存在酉阵 $V$ 使得 $$\bex V^*AV=\sex{\ba{ccc} \lm_1(A)&&*\\ &\ddots&\\ &&\lm_n(A) \ea}. \eex$$ 记 $V=(v_1,\cdots,v_n)$, 则 $$\bex \sef{Av_i,v_i}=\lm_i(A). \eex$$ 于是对 $1\leq k\leq n$, $$\beex \bea \sum_{i=1}^k \Re \lm_i(A) &=\sum_{i=1}^k \frac{\lm_i(A)+\overline{\lm_i(A)}}{2}\\ &=\sum_{i=1}^k \frac{1}{2}\sef{Av_i,v_i} +\frac{1}{2} \overline{\sef{Av_i,v_i}}\\ &=\sum_{i=1}^k \frac{1}{2}\sef{Av_i,v_i} +\frac{1}{2}\sef{A^*v_i,v_i}\quad\sex{\overline{\sef{Av_i,v_i}} =\sef{v_i,Av_i}=\sef{A^*v_i,v_i}}\\ &=\sum_{i=1}^k \sef{\frac{A+A^*}{2}v_i,v_i}\\ &=\sum_{i=1}^k \sef{\Re A v_i,v_i}\\ &\leq \sum_{i=1}^k \lm_i(\Re A)\quad\sex{\mbox{由 (1)}}. \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.12
12. 设 $A$ 是个 $n$ 阶振荡矩阵, 则 $A^{n-1}$ 是全面正矩阵.       证明: 我相信可以利用定理 6.27 (Wielandt) 或者其证明思路, 但是目前还没有做出来.
589 0
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
479 0
[詹兴致矩阵论习题参考解答]习题6.14
14. (Shao) 设非负方阵 $A$ 具有 (6.22) 的形式并且 $A$ 没有零行也没有零列. 证明: $A$ 不可月且非本原指标为 $k$ 当且仅当乘积 $$\bex A_{12}A_{23}\cdots A_{k-1,k}A_{k1} \eex$$ 是本原矩阵.
516 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
574 0
|
vr&ar
[詹兴致矩阵论习题参考解答]习题6.6
6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.
549 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.5
5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.
556 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
693 0
[詹兴致矩阵论习题参考解答]习题4.8
8. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 设 $x,y\in \bbR^n_+$, 则对 $\bbR^n$ 上的任何对称规度函数 $\varphi$ 有 $$\bex \varphi(x\circ y)\leq [\varphi(x...
582 0
|
Perl
[詹兴致矩阵论习题参考解答]习题4.3
3. $G\in M_n$ 称为一个秩 $k$ 部分等距矩阵, 若 $$\bex s_1(G)=\cdots=s_k(G)=1,\quad s_{k+1}(G)=\cdots=s_n(G)=0. \eex$$ 证明对 $X\in M_n$, $$\bex \sum_{j=1}^k s_j(X) =\...
690 0
[詹兴致矩阵论习题参考解答]习题4.5
5. 设 $A,B\in M_n$, 则 $$\bex s_j(AB)\leq \sen{A}_\infty s_j(B),\quad s_j(AB)\leq \sen{B}_\infty s_j(A),\quad j=1,\cdots,n.
547 0