[詹兴致矩阵论习题参考解答]习题3.11

简介: 11. (Ky Fan) 对于 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 证明: $$\bex \Re \lm(A)\prec \lm(\Re A), \eex$$ 其中 $\lm(A)$ 表示 $A$ 的特征值作成的向量, $\Re\lm(A)$ 表取 $A$ 的特征值的实部所得向量.

11. (Ky Fan) 对于 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 证明: $$\bex \Re \lm(A)\prec \lm(\Re A), \eex$$ 其中 $\lm(A)$ 表示 $A$ 的特征值作成的向量, $\Re\lm(A)$ 表取 $A$ 的特征值的实部所得向量.

 

 

证明:

 

(1). 先证明对 Hermite 阵 $H$, 若它的特征值为 $$\bex \lm_1\geq \cdots\geq \lm_n, \eex$$ 则 $$\bex \sum_{i=1}^k \lm_i =\max_{\sen{x_i}=1\atop i=1,\cdots,k} \sum_{i=1}^k \sef{Hx_i,x_i}. \eex$$ 事实上, 由 $H$ 为 Hermite 阵知存在酉阵 $U$, 使得 $$\bex U^*HU=\diag(\lm_1,\cdots,\lm_n). \eex$$ 若记 $U=(u_1,\cdots,u_n)$, 则 $$\bex \sum_{i=1}^k \sef{Hu_i,u_i}=\sum_{i=1}^k \lm_i. \eex$$ 另一方面, 对任一适合 $\sen{x_i}=1$ 的向量组 $x_1,\cdots,x_k$, 可设 $$\bex x_i=\sum_{j=1}^n a_{ij}u_j,\quad \sum_{j=1}^n |a_{ij}|^2=1, \eex$$ 而 $$\beex \bea Ax_i&=\sum_{j=1}^n a_{ij}\lm_ju_j,\\ \sef{Ax_i,x_i}&=\sef{ \sum_{j=1}^n a_{ij}\lm_ju_j,\sum_{l=1}^n a_{il}u_l}\\ &=\sum_{j,l=1}^n a_{ij}\bar a_{il}\lm_j\sef{u_j,u_l}\\ &=\sum_{j=1}^n a_{ij}\bar a_{ij} \lm_j\\ &=\sum_{j=1}^n |a_{ij}|^2 \lm_j\\ &=\sum_{j=1}^n |a_{ij}|^2 \lm_k +\sum_{j=1}^n |a_{ij}|^2 (\lm_j-\lm_k)\\ &=\lm_k +\sum_{j=1}^k |a_{ij}|^2 (\lm_j-\lm_k) +\sum_{j=k+1}^n |a_{ij}|^2 (\lm_j-\lm_k)\\ &\leq \lm_k +\sum_{j=1}^k |a_{ij}|^2 (\lm_j-\lm_k),\\ \sum_{i=1}^k \sef{Ax_i,x_i} &\leq k\lm_k +\sum_{i=1}^k \sum_{j=1}^k |a_{ij}|^2(\lm_j-\lm_k)\\ &\leq k\lm_k+\sum_{j=1}^k (\lm_j-\lm_k)\sum_{i=1}^k |a_{ij}|^2\\ &\leq k\lm_k+\sum_{j=1}^k (\lm_j-\lm_k)\\ &=\sum_{j=1}^k \lm_j. \eea \eeex$$

 

(2). 再证题目. 由 $A\in M_n$ 及 Schur 酉三角化定理, 存在酉阵 $V$ 使得 $$\bex V^*AV=\sex{\ba{ccc} \lm_1(A)&&*\\ &\ddots&\\ &&\lm_n(A) \ea}. \eex$$ 记 $V=(v_1,\cdots,v_n)$, 则 $$\bex \sef{Av_i,v_i}=\lm_i(A). \eex$$ 于是对 $1\leq k\leq n$, $$\beex \bea \sum_{i=1}^k \Re \lm_i(A) &=\sum_{i=1}^k \frac{\lm_i(A)+\overline{\lm_i(A)}}{2}\\ &=\sum_{i=1}^k \frac{1}{2}\sef{Av_i,v_i} +\frac{1}{2} \overline{\sef{Av_i,v_i}}\\ &=\sum_{i=1}^k \frac{1}{2}\sef{Av_i,v_i} +\frac{1}{2}\sef{A^*v_i,v_i}\quad\sex{\overline{\sef{Av_i,v_i}} =\sef{v_i,Av_i}=\sef{A^*v_i,v_i}}\\ &=\sum_{i=1}^k \sef{\frac{A+A^*}{2}v_i,v_i}\\ &=\sum_{i=1}^k \sef{\Re A v_i,v_i}\\ &\leq \sum_{i=1}^k \lm_i(\Re A)\quad\sex{\mbox{由 (1)}}. \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.12
12. 设 $A$ 是个 $n$ 阶振荡矩阵, 则 $A^{n-1}$ 是全面正矩阵.       证明: 我相信可以利用定理 6.27 (Wielandt) 或者其证明思路, 但是目前还没有做出来.
584 0
[詹兴致矩阵论习题参考解答]习题7.1
1. (Maybee) 设 $A$ 是一个树符号模式. 证明:   (1). 若 $A$ 的每个简单 $2$-圈都是正的, 则对于任何 $B\in Q(A)$, 存在可逆的实对角矩阵 $D$ 使得 $D^{-1}AD$ 为对称矩阵.
646 0
[詹兴致矩阵论习题参考解答]习题7.6
6. 举例说明: 存在那样的实方阵 $A$, $A$ 的零元素的个数大于 $A$ 的 Jordan 标准形的零元素的个数.       解答: 想法就是利用第 5 节的 Jordan 标准形的组合刻画.
659 0
[詹兴致矩阵论习题参考解答]习题7.2
2. 证明引理 7.13.       证明: 用反证法. 若对任一置换阵 $P$, $PA$ 的对角元都至少有一个为零, 则 $A$ 的每条对角线至少含有一个零元素. 由 Frobenius-K\"onig 定理, $A$ 有一个 $r\times s$ 阶的零子矩阵, $r+s=n+1$.
638 0
[詹兴致矩阵论习题参考解答]习题6.13
13. (Sinkhorn) 设 $A$ 是一个方的正矩阵, 则存在对角元素为正数的两个对角矩阵 $D_1$ 和 $D_2$ 使得 $D_1AD_2$ 为双随机矩阵 (doubly stochastic matrix).
599 0
[詹兴致矩阵论习题参考解答]习题6.15
15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...
581 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.10
10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢?       解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值.
605 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 $A$ 是个不可约非负方阵, 则函数 $$\bex f(t)=\rho[tA+(1-t)A^T] \eex$$ 在 $[0,1/2]$ 上递增, 在 $[1/2,1]$ 上递减.
520 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.1
1. 怎样的非负矩阵可逆并且其逆也非负?       解答: 设 $A\geq0$ 可逆, 且其逆 $A^{-1}=B\geq 0$. 则 $$\bex I_n=AB=BA. \eex$$ 对 $A$ 的第 $i$ ($1\leq i\leq n$) 列, 由 $A$ 可逆知 $$\bex \exists\ j,\st a_{ij}>0.
521 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
689 0