[詹兴致矩阵论习题参考解答]习题4.7

简介: 7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j

7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j<\tr A_0^{-1}. \eex$$

 

 

 

证明: 记 $$\bex \sum_{i=0}^j A_i=B_j, \eex$$ 则 $$\beex \bea \tr\sex{\sum_{i=0}^j A_i}^{-2}A_j &=\tr \sex{B_j^{-2} (B_j-B_{j-1})}\\ &=\tr (B_j^{-1}-B_j^{-2}B_{j-1})\\ &=\sum_{i=1}^n s_j(B_j^{-1}) -\tr(B_j^{-2}B_{j-1})\\ &=\sum_{i=1}^n s_j(B_j^{-1}B_{j-1}^\frac{1}{2} \cdot B_{j-1}^{-\frac{1}{2}}) -\tr(B_j^{-2}B_{j-1})\\ &\leq\frac{1}{2}\sum_{i=1}^n s_i \sex{B_{j-1}^\frac{1}{2}B_j^{-2}B_{j-1}^\frac{1}{2} +B_{j-1}^{-1}} -\tr (B_j^{-2}B_{j-1})\quad\sex{\mbox{推论 4.18}}\\ &=\frac{1}{2}\tr \sex{B_{j-1}^\frac{1}{2}B_j^{-2}B_{j-1}^\frac{1}{2} +B_{j-1}^{-1}} -\tr (B_j^{-2}B_{j-1})\\ &=\frac{1}{2}\tr(B_j^{-2}B_{j-1}) +\frac{1}{2}\tr B_{j-1}^{-1} -\tr(B_j^{-2}B_{j-1})\quad\sex{\tr(XY)=\tr(YX)}\\ &=\frac{1}{2}\tr B_{j-1}^{-1} -\frac{1}{2} \tr(B_j^{-2}B_{j-1})\\ &=\frac{1}{2}\tr B_{j-1}^{-1} -\frac{1}{2} \tr(B_j^{-2}(B_j-A_j))\\ &=\frac{1}{2}\tr B_{j-1}^{-1} -\frac{1}{2} \tr B_j^{-1} +\frac{1}{2}\tr (B_j^{-2}A_j). \eea \eeex$$ 故 $$\beex \bea \tr B_j^{-2}A_j&=\tr B_{j-1}^{-1}-\tr B_j^{-1},\\ \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j &=\sum_{j=1}^k \tr B_j^{-2}A_j\\ &=\sum_{j=1}^k \sez{\tr B_{j-1}^{-1}-\tr B_j^{-1}}\\ &=\tr B_0^{-1} -\tr B_k^{-1}\\ &<\tr B_0^{-1}\\ &=\tr A_0^{-1}. \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.6
6. 举例说明: 存在那样的实方阵 $A$, $A$ 的零元素的个数大于 $A$ 的 Jordan 标准形的零元素的个数.       解答: 想法就是利用第 5 节的 Jordan 标准形的组合刻画.
659 0
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
476 0
[詹兴致矩阵论习题参考解答]习题6.12
12. 设 $A$ 是个 $n$ 阶振荡矩阵, 则 $A^{n-1}$ 是全面正矩阵.       证明: 我相信可以利用定理 6.27 (Wielandt) 或者其证明思路, 但是目前还没有做出来.
584 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
573 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.10
10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢?       解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值.
605 0
[詹兴致矩阵论习题参考解答]习题5.1
1. $A\in M_n$ 称为正交投影矩阵如果 $A$ 是 Hermite 矩阵且幂等: $$\bex A^*=A=A^2. \eex$$ 证明: 若 $A,B\in M_n$ 为正交投影矩阵, 则 $\sen{A-B}_\infty \leq 1$.
710 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
516 0
[詹兴致矩阵论习题参考解答]习题4.12
12. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 则对 $A,B\in M_n$ 和酉不变范数有 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}.
610 0
[詹兴致矩阵论习题参考解答]习题4.11
11. $M_n$ 上的范数 $\sen{\cdot}$ 称为是对称的, 若 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty \sen{B},\quad \forall\ A,B,C\in M_n.
584 0
|
关系型数据库 RDS
[詹兴致矩阵论习题参考解答]习题3.9
9. 用公式 $$\bex t^r=\frac{\sin r\pi}{\pi}\int_0^\infty \frac{s^{r-1}t}{s+t}\rd s\quad \sex{00$ 的情形下证明结论如下.
628 0