[詹兴致矩阵论习题参考解答]习题4.7

简介: 7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j

7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j<\tr A_0^{-1}. \eex$$

 

 

 

证明: 记 $$\bex \sum_{i=0}^j A_i=B_j, \eex$$ 则 $$\beex \bea \tr\sex{\sum_{i=0}^j A_i}^{-2}A_j &=\tr \sex{B_j^{-2} (B_j-B_{j-1})}\\ &=\tr (B_j^{-1}-B_j^{-2}B_{j-1})\\ &=\sum_{i=1}^n s_j(B_j^{-1}) -\tr(B_j^{-2}B_{j-1})\\ &=\sum_{i=1}^n s_j(B_j^{-1}B_{j-1}^\frac{1}{2} \cdot B_{j-1}^{-\frac{1}{2}}) -\tr(B_j^{-2}B_{j-1})\\ &\leq\frac{1}{2}\sum_{i=1}^n s_i \sex{B_{j-1}^\frac{1}{2}B_j^{-2}B_{j-1}^\frac{1}{2} +B_{j-1}^{-1}} -\tr (B_j^{-2}B_{j-1})\quad\sex{\mbox{推论 4.18}}\\ &=\frac{1}{2}\tr \sex{B_{j-1}^\frac{1}{2}B_j^{-2}B_{j-1}^\frac{1}{2} +B_{j-1}^{-1}} -\tr (B_j^{-2}B_{j-1})\\ &=\frac{1}{2}\tr(B_j^{-2}B_{j-1}) +\frac{1}{2}\tr B_{j-1}^{-1} -\tr(B_j^{-2}B_{j-1})\quad\sex{\tr(XY)=\tr(YX)}\\ &=\frac{1}{2}\tr B_{j-1}^{-1} -\frac{1}{2} \tr(B_j^{-2}B_{j-1})\\ &=\frac{1}{2}\tr B_{j-1}^{-1} -\frac{1}{2} \tr(B_j^{-2}(B_j-A_j))\\ &=\frac{1}{2}\tr B_{j-1}^{-1} -\frac{1}{2} \tr B_j^{-1} +\frac{1}{2}\tr (B_j^{-2}A_j). \eea \eeex$$ 故 $$\beex \bea \tr B_j^{-2}A_j&=\tr B_{j-1}^{-1}-\tr B_j^{-1},\\ \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j &=\sum_{j=1}^k \tr B_j^{-2}A_j\\ &=\sum_{j=1}^k \sez{\tr B_{j-1}^{-1}-\tr B_j^{-1}}\\ &=\tr B_0^{-1} -\tr B_k^{-1}\\ &<\tr B_0^{-1}\\ &=\tr A_0^{-1}. \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
479 0
[詹兴致矩阵论习题参考解答]习题6.15
15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...
583 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
534 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题6.3
3. 设 $\lm$ 是一个复数. 证明: 存在非负方阵 $A$ 使得 $\lm$ 是 $A$ 的一个特征值.       证明:   (1). 首先 $A$ 的阶数须 $\geq 3$. 当 $n=1$ 时, 非负方阵的特征值为非负实数.
695 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.1
1. 怎样的非负矩阵可逆并且其逆也非负?       解答: 设 $A\geq0$ 可逆, 且其逆 $A^{-1}=B\geq 0$. 则 $$\bex I_n=AB=BA. \eex$$ 对 $A$ 的第 $i$ ($1\leq i\leq n$) 列, 由 $A$ 可逆知 $$\bex \exists\ j,\st a_{ij}>0.
524 0
[詹兴致矩阵论习题参考解答]习题4.15
15. (Fan-Hoffman) 设 $A,H\in M_n$, 其中 $H$ 为 Hermite 矩阵, 则 $$\bex \sen{A-\Re A}\leq \sen{A-H} \eex$$ 对任何酉不变范数成立.
611 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题4.4
4. 设 $A=(a_{ij})\in M_n$, 则 $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$       证明: 一般我们都用 Fan 支配原理的顺推情形: $$\bex s(A)\prec s(B)\lra \mbox{ 对任意酉不变范数 }\sen{\cdot},\ \sen{A}\leq \sen{B}.
649 0
[詹兴致矩阵论习题参考解答]习题4.6
6. 设 $A,B\in M_n$ 半正定, 则 $$\bex s_j(A-B)\leq s_j\sex{ \sex{\ba{cc} A&0\\ 0&B \ea}},\quad j=1,\cdots,n.
574 0
[詹兴致矩阵论习题参考解答]习题4.11
11. $M_n$ 上的范数 $\sen{\cdot}$ 称为是对称的, 若 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty \sen{B},\quad \forall\ A,B,C\in M_n.
585 0
[詹兴致矩阵论习题参考解答]习题3.6
6. 设 $A,B\in M_n$, $A$ 是正定矩阵, $B$ 是 Hermite 矩阵. 则 $$\bex A+B\mbox{ 正定当且仅当 }\lm_j(A^{-1}B)>-1,\quad j=1,\cdots,n.
550 0