[Everyday Mathematics]20150223

简介: 是否存在 $3\times 3$ 阶实方阵 $A$ 使得 $\tr A=0$ 且 $A^2+A^T=I$?

是否存在 $3\times 3$ 阶实方阵 $A$ 使得 $\tr A=0$ 且 $A^2+A^T=I$?

目录
相关文章
[Everyday Mathematics]20150305
设 $f\in C^2[0,1]$, $$\bex f(0)=-1,\quad f'(1)=3,\quad \int_0^1 xf''(x)\rd x=1. \eex$$ 试求 $f(1)$.   解答: $$\beex \bea 1&=\int_0^1 x\rd f'(x)\\ &=xf'(x...
690 0
[Everyday Mathematics]20150228
试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty e^{-x^3}\rd x. \eex$$
843 0
[Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
463 0
[Everyday Mathematics]20150214
设 $\dps{x\in \sex{0,\frac{\pi}{2}}}$, 试比较 $\tan(\sin x)$ 和 $\sin(\tan x)$.
563 0
[Everyday Mathematics]20150218
设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.
483 0
[Everyday Mathematics]20150227
(Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯一的一个内切于 $T$ 的椭圆, 使得切点为 $T$ 各边的中点, 椭圆的的两焦点为 $p'(z)$ 的两个根.
823 0
[Everyday Mathematics]20150207
求极限 $$\bex \lim_{x\to+\infty}\sex{\sqrt{x+\sqrt{x+\sqrt{x^\al}}}-\sqrt{x}},\quad\sex{0
494 0
[Everyday Mathematics]20150210
设正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 $1$, $E$ 为 $AB$ 的中点, $P$ 为体对角线 $BD_1$ 上一点, 当 $\angle CPE$ 最大时, 求三菱锥 $P-BCE$ 的体积.
670 0
[Everyday Mathematics]20150206
$$\bex \sen{fg}_{L^1}\leq C\sen{f}_{L^{r,\al}}\sen{g}_{L^{r',\al'}}, \eex$$ 其中 $$\bex f\in L^{r,\al},\quad g\in L^{r',\al'},\quad \frac{1}{r}+\frac{1}...
483 0
[Everyday Mathematics]20150122
设 $f:[0,1]\to [0,1]$.   (1). 若 $f$ 连续, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.   (2). 若 $f$ 单调递增, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.
748 0