[Everyday Mathematics]20150222

简介: 设 $$\bex a_0=1,\quad a_1=\frac{1}{2},\quad a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}\ (n\geq 1). \eex$$ 试证: $\dps{\sum_{k=0}^\infty\frac{a_{k+1}}{a_k}}$ 收敛, 并求其值.

设 $$\bex a_0=1,\quad a_1=\frac{1}{2},\quad a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}\ (n\geq 1). \eex$$ 试证: $\dps{\sum_{k=0}^\infty\frac{a_{k+1}}{a_k}}$ 收敛, 并求其值.

目录
相关文章
[Everyday Mathematics]20150306
在王高雄等《常微分方程(第三版)》习题 2.5 第 1 题第 (32) 小题: $$\bex \frac{\rd y}{\rd x}+\frac{1+xy^3}{1+x^3y}=0. \eex$$   解答: $$\beex \bea 0&=(1+xy^3)\rd x+(1+x^3y)\rd y...
652 0
[Everyday Mathematics]20150305
设 $f\in C^2[0,1]$, $$\bex f(0)=-1,\quad f'(1)=3,\quad \int_0^1 xf''(x)\rd x=1. \eex$$ 试求 $f(1)$.   解答: $$\beex \bea 1&=\int_0^1 x\rd f'(x)\\ &=xf'(x...
690 0
|
机器学习/深度学习
[Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1].
657 0
[Everyday Mathematics]20150220
试求 $$\bex \sum_{k=0}^\infty\frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)}. \eex$$
508 0
[Everyday Mathematics]20150221
设 $y_n=x_n^2$ 如下归纳定义: $$\bex x_1=\sqrt{5},\quad x_{n+1}=x_n^2-2\ (n=1,2,\cdots). \eex$$ 试求 $\dps{\vlm{n}\frac{x_1x_2\cdots x_n}{x_{n+1}}}$.
591 0
|
机器学习/深度学习
[Everyday Mathematics]20150211 Carlson inequality
$$\bex a_n\geq 0\ra \vsm{n}a_n\leq \sqrt{\pi}\sex{\vsm{n}a_n^2}^{1/4} \sex{\vsm{n}n^2a_n^2}^{1/4}, \eex$$ $$\bex \int_0^\infty |f(x)|\rd x \leq\sqrt{\...
596 0
[Everyday Mathematics]20150210
设正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 $1$, $E$ 为 $AB$ 的中点, $P$ 为体对角线 $BD_1$ 上一点, 当 $\angle CPE$ 最大时, 求三菱锥 $P-BCE$ 的体积.
670 0
[Everyday Mathematics]20150208
对 $f\in C^2(\bbR)$ 适合 $$\bex \vlm{|x|}f(x)=0, \eex$$ 试证: $$\bex \int_{\bbR} |f'|^p\rd x \leq (p-1)^\frac{p}{2}\int_{\bbR} |ff''|^\frac{p}{2} \rd x,\quad p\geq 2.
443 0
[Everyday Mathematics]20150205
设 $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \sex{\frac{A}{h-k}}^\al\phi(h)^\beta,\quad k>h\geq k_0, \eex$$ 其中 $A,\al>0$, $\beta>1$.
650 0
[Everyday Mathematics]20150125
试求极限 $$\bex \lim_{x\to 0^+}\int_x^{2x} \frac{\sin^m t}{t^n}\rd t\quad\sex{m,n\in\bbN}. \eex$$
463 0