[Everyday Mathematics]20150208

简介: 对 $f\in C^2(\bbR)$ 适合 $$\bex \vlm{|x|}f(x)=0, \eex$$ 试证: $$\bex \int_{\bbR} |f'|^p\rd x \leq (p-1)^\frac{p}{2}\int_{\bbR} |ff''|^\frac{p}{2} \rd x,\quad p\geq 2.

对 $f\in C^2(\bbR)$ 适合 $$\bex \vlm{|x|}f(x)=0, \eex$$ 试证: $$\bex \int_{\bbR} |f'|^p\rd x \leq (p-1)^\frac{p}{2}\int_{\bbR} |ff''|^\frac{p}{2} \rd x,\quad p\geq 2. \eex$$

目录
相关文章
[Everyday Mathematics]20150224
设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.
469 0
[Everyday Mathematics]20150218
设 $A,B$ 是 $n$ 阶复方阵, 适合 $$\bex A^2B+BA^2=2ABA. \eex$$ 试证: 存在 $k\in\bbZ^+$, 使得 $(AB-BA)^k=0$.
488 0
[Everyday Mathematics]20150222
设 $$\bex a_0=1,\quad a_1=\frac{1}{2},\quad a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}\ (n\geq 1). \eex$$ 试证: $\dps{\sum_{k=0}^\infty\frac{a_{k+1}}{a_k}}$ 收敛, 并求其值.
697 0
[Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\st f''(\xi)=f(\xi)(1+2\tan^2\xi). \eex$$
768 0
[Everyday Mathematics]20150223
是否存在 $3\times 3$ 阶实方阵 $A$ 使得 $\tr A=0$ 且 $A^2+A^T=I$?
536 0
|
机器学习/深度学习
[Everyday Mathematics]20150211 Carlson inequality
$$\bex a_n\geq 0\ra \vsm{n}a_n\leq \sqrt{\pi}\sex{\vsm{n}a_n^2}^{1/4} \sex{\vsm{n}n^2a_n^2}^{1/4}, \eex$$ $$\bex \int_0^\infty |f(x)|\rd x \leq\sqrt{\...
605 0
[Everyday Mathematics]20150209
设 $f$ 在区间 $I$ 上三阶可导, $f'\neq 0$, 则可定义 $f$ 的 Schwarz 导数: $$\bex S(f,x)=\frac{f'''(x)}{f'(x)}-\frac{3}{2}\sez{\frac{f''(x)}{f'(x)}}^2 =\sez{\frac{f''(x)...
813 0
[Everyday Mathematics]20150206
$$\bex \sen{fg}_{L^1}\leq C\sen{f}_{L^{r,\al}}\sen{g}_{L^{r',\al'}}, \eex$$ 其中 $$\bex f\in L^{r,\al},\quad g\in L^{r',\al'},\quad \frac{1}{r}+\frac{1}...
485 0
[Everyday Mathematics]20150207
求极限 $$\bex \lim_{x\to+\infty}\sex{\sqrt{x+\sqrt{x+\sqrt{x^\al}}}-\sqrt{x}},\quad\sex{0
497 0