[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.3

简介: 求证: $\dps{f(x)=\int_0^x (t-t^2)\sin^{2n}t\rd t}$ ($n$ 为正整数) 在 $x\geq 0$ 上的最大值不超过 $\dps{\frac{1}{(2n+2)(2n+3)}}$.

求证: $\dps{f(x)=\int_0^x (t-t^2)\sin^{2n}t\rd t}$ ($n$ 为正整数) 在 $x\geq 0$ 上的最大值不超过 $\dps{\frac{1}{(2n+2)(2n+3)}}$. (西北大学)

 

证明: 由 $$\bex f'(x)=(x-x^2)\sin^{2n}x\sedd{\ba{ll} >0,&0<x<1\\ =0,&x=1\\ <0,&x>1 \ea} \eex$$ 知 $$\beex \bea f(x)&\leq f(1)=\int_0^1 (t-t^2)\sin^{2n}t\rd t \leq \int_0^1 (t-t^2)t^{2n}\rd t\\ &=\frac{1}{2n+2}-\frac{1}{2n+3}=\frac{1}{(2n+2)(2n+3)}. \eea \eeex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.13
证明: 如果在 $(-\infty,+\infty)$ 上的连续函数 $f(x)$ 满足 $$\bex \int_x^{x+1}f(x)\rd t=0, \eex$$ 那么 $f(x)$ 是周期函数.   证明: 对 $x$ 求导有 $$\bex f(x+1)-f(x)=0, \eex$$ 而 $f$ 为 $1$ 周期函数.
716 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.22
设 $f\in C[0,1]$ (即 $f$ 在 $[0,1]$ 上连续), 且在 $(0,1)$ 上可微, 若有 $\dps{8\int_\frac{7}{8}^1 f(x)\rd x=f(0)}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f'(\xi)=0$.
771 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.18
设 $\dps{\lim_{x\to 0}\frac{1}{bx-\sin x}\int_0^x \frac{t^2}{\sqrt{a+t^2}}\rd t=1}$, 试求正常数 $a$ 与 $b$. (华中师范大学)   解答: 由 $$\beex \bea 1&=\lim_{x\to 0}\...
883 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.17
设在 $\dps{\sex{0,\frac{\pi}{2}}}$ 内连续函数 $f(x)>0$, 且满足 $$\bex f^2(x)=\int_0^x f(t)\frac{\tan t}{\sqrt{1+2\tan^2t}}\rd t.
916 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.6
$f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}.
795 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.4
把满足下述条件 (1) 和 (2) 的实函数 $f$ 的全体记作 $F$:   (1). $f(x)$ 在闭区间 $[0,1]$ 上连续, 并且非负;   (2). $f(0)=0$, $f(1)=1$.
549 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.24
设 $\sed{n_k}$ 是自然数列 $\sed{n}$ 的子序列, 试证:   (1). 当 $n_k-n_{k-1}\geq 1$ 时, $\dps{\vsm{n}\frac{1}{n_k}}$ 收敛;   (2).
768 0
|
机器学习/深度学习 Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.21
设数 $a>0$, $\sed{p_n}$ 是一个数列, 并且 $p_n>0$, $p_{n+1}\geq p_n$. 证明: 级数 $$\bex \vsm{n}\frac{p_n-p_{n-1}}{p_np_{n-1}^a} \eex$$ 收敛.
638 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.27
求 $\dps{\lim_{t\to +\infty}\sex{\frac{1}{t} +\frac{2t}{t^2+1^2}+\frac{2t^2}{t^2+2^2}+\cdots+\frac{2t}{t^2+n^2}+\cdots}}$.
621 0