[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.21

简介: 设数 $a>0$, $\sed{p_n}$ 是一个数列, 并且 $p_n>0$, $p_{n+1}\geq p_n$. 证明: 级数 $$\bex \vsm{n}\frac{p_n-p_{n-1}}{p_np_{n-1}^a} \eex$$ 收敛.

设数 $a>0$, $\sed{p_n}$ 是一个数列, 并且 $p_n>0$, $p_{n+1}\geq p_n$. 证明: 级数 $$\bex \vsm{n}\frac{p_n-p_{n-1}}{p_np_{n-1}^a} \eex$$ 收敛. (国外赛题)

 

证明: 由 $p_{n+1}\geq p_n$ 知

 

(1). $\dps{\vlm{n}p_n=p>0}$. 此时, $$\bex \vsm{n}\frac{p_n-p_{n-1}}{p_np_{n-1}^a} \leq \frac{1}{p_1p_0^a}\vsm{n}(p_n-p_{n-1}) =\frac{p-p_0}{p_1p_0^a}. \eex$$

 

(2). 或 $\dps{\vlm{n}p_n=+\infty}$. 此时, 若 $a\geq 1$, 则 $\exists\ N,\st n\geq N\ra$ $$\bex p_n\geq 1\ra \frac{p_n-p_{n-1}}{p_np_{n-1}^a} \leq \frac{p_n-p_{n-1}}{p_np_{n-1}}=\frac{1}{p_{n-1}}-\frac{1}{p_n}, \eex$$ 而 $$\bex \sum_{n=N}^\infty \frac{p_n-p_{n-1}}{p_np_{n-1}}\leq \frac{1}{p_{N-1}}. \eex$$ 若 $0<a<1$, 则 $$\beex \bea \frac{1}{p_{n-1}^a}-\frac{1}{p_n^a} &=\frac{p_n^a-p_{n-1}^a}{p_{n-1}^ap_n^a} =\frac{a\xi^{a-1} (p_n-p_{n-1})}{p_{n-1}^ap_n^a}\quad\sex{p_{n-1}<\xi<p_n}\\ &\geq \frac{ap_{n-1}^{a-1}(p_n-p_{n-1})}{p_{n-1}^ap_n^a} =a \frac{p_n-p_{n-1}}{p_np_{n-1}^a}, \eea \eeex$$ 而 $$\bex \vsm{n}\frac{p_n-p_{n-1}}{p_np_{n-1}^a}\leq \frac{1}{a}\vsm{n}\sex{\frac{1}{p_{n-1}^a}-\frac{1}{p_n^a}} =\frac{1}{ap_0^a}. \eex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.12
证明: 若 $f(x)$ 为 $[0,1]$ 上的连续函数, 且对一切 $x\in [0,1]$ 有 $\dps{\int_0^x f(u)\rd u\geq f(x)\geq 0}$, 则 $f(x)\equiv 0$.
787 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.16
按牛顿二项式展开及代换 $x=\sin t$ 两种方法计算积分 $\dps{\int_0^1 (1-x^2)^n\rd x}$ ($n$ 为正整数). 并由此说明: $$\bex \sum_{k=0}^n C_n^k(-1)^k \frac{1}{2k+1}=\frac{(2n)!!}{(2n+1)!!}.
802 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.22
设 $f\in C[0,1]$ (即 $f$ 在 $[0,1]$ 上连续), 且在 $(0,1)$ 上可微, 若有 $\dps{8\int_\frac{7}{8}^1 f(x)\rd x=f(0)}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f'(\xi)=0$.
748 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.21
设 $f(x)$ 的一阶导数在 $[0,1]$ 上连续, 且 $f(0)=f(1)=0$, 求证: $\dps{\sev{\int_0^1 f(x)\rd x}\leq \frac{1}{4}\max_{0\leq x\leq 1}|f'(x)|}$.
694 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.25
设 $f(x)$ 在 $(a,b)$ 内连续, $$\bex \lim_{h\to 0}\frac{1}{h^3}\int_0^h [f(x+u)+f(x-u)-2f(x)]\rd u=0,\quad(x\in [a,b]), \eex$$ 试证 $f(x)$ 为线性函数.
840 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.15
$[a,b]$ 上的连续函数列 $\varphi_1,\varphi_2,\cdots,\varphi_n,\cdots$ 满足 $\dps{\int_a^b \varphi_n^2(x)\rd x=1}$.
734 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.3
求证: $\dps{f(x)=\int_0^x (t-t^2)\sin^{2n}t\rd t}$ ($n$ 为正整数) 在 $x\geq 0$ 上的最大值不超过 $\dps{\frac{1}{(2n+2)(2n+3)}}$.
667 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.27
求 $\dps{\lim_{t\to +\infty}\sex{\frac{1}{t} +\frac{2t}{t^2+1^2}+\frac{2t^2}{t^2+2^2}+\cdots+\frac{2t}{t^2+n^2}+\cdots}}$.
602 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.22
举出一个收敛级数 $\dps{\vsm{n}a_n}$ 的例子, 使级数 $\dps{\vsm{n}a_n\ln n}$ 发散.   解答: 取 $\dps{a_n=\frac{1}{n\ln n\ln^2\ln n}}$, 则由 $$\bex \int_{e^e}^\infty \frac{1...
940 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.18
设 $f(x)$ 是在 $(-\infty,+\infty)$ 内的可微函数, 且满足:   (1). $f(x)>0$;   (2). $|f'(x)|\leq m|f(x)|$, 其中 $0
741 0