[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.4

简介: 把满足下述条件 (1) 和 (2) 的实函数 $f$ 的全体记作 $F$:   (1). $f(x)$ 在闭区间 $[0,1]$ 上连续, 并且非负;   (2). $f(0)=0$, $f(1)=1$.

把满足下述条件 (1) 和 (2) 的实函数 $f$ 的全体记作 $F$:

 

(1). $f(x)$ 在闭区间 $[0,1]$ 上连续, 并且非负;

 

(2). $f(0)=0$, $f(1)=1$. 试证明: $\dps{\int_{f\in F}\int_0^1 f(x)\rd x=0}$, 但不存在 $\varphi\in F$, 使 $\dps{\int_0^1 \varphi(x)\rd x=0}$. (厦门大学)

 

证明: 取 $$\bex F\ni f_n(x)=\sedd{\ba{ll} 0,&0\leq x\leq 1-\frac{1}{n}\\ nx-n+1,&1-\frac{1}{n}\leq x\leq 1 \ea}, \eex$$ 则 $$\bex \int_0^1 f_n(x)\rd x=\frac{1}{2n}\to 0\ (n\to\infty), \eex$$ 而 $$\bex \inf_{f\in F}\int_0^1 f(x)\rd x=0. \eex$$ 但 $$\beex \bea f\in F&\ra f(1)=1\ra \exists\ \delta\in(0,1),\st f(x)>\frac{1}{2},\ x\in [1-\delta,1]\\ &\ra \int_0^1 f(x)\rd x\geq \int_{1-\delta}^1 f(x)\rd x>\frac{\delta}{2} >0. \eea \eeex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.19
求 $\dps{\lim_{x\to +\infty} \int_x^{x+2} t\sex{\sin \frac{3}{t}}f(t)\rd t}$, 其中 $f(x)$ 可微, 且已知 $\dps{\lim_{t\to+\infty}f(t)=1}$.
897 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.14
设 $f(x)$ 处处连续, $\dps{F(x)=\frac{1}{2\delta}\int_{-\delta}^\delta f(x+t)\rd t}$, 其中 $\delta$ 为任何正数. 证明:   (1).
643 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.21
设 $f(x)$ 的一阶导数在 $[0,1]$ 上连续, 且 $f(0)=f(1)=0$, 求证: $\dps{\sev{\int_0^1 f(x)\rd x}\leq \frac{1}{4}\max_{0\leq x\leq 1}|f'(x)|}$.
708 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.13
证明: 如果在 $(-\infty,+\infty)$ 上的连续函数 $f(x)$ 满足 $$\bex \int_x^{x+1}f(x)\rd t=0, \eex$$ 那么 $f(x)$ 是周期函数.   证明: 对 $x$ 求导有 $$\bex f(x+1)-f(x)=0, \eex$$ 而 $f$ 为 $1$ 周期函数.
716 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.11
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    函数 $f(x)$ 在 $[a,b]$ 上连续, 并且对于任何区间 $[\al,\beta]$ ($a\leq \al
978 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.7
$f(x)\neq 0$, 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 证明至少存在点 $c\in [a,b]$, 使 $$\bex |f'(c)|>\frac{4}{(b-a)^2}\int_a^b |f(x)|\rd x.
842 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.25
对函数 $$\bex \zeta(s)=\vsm{n}\frac{1}{n^s}\quad\sex{s>1}, \eex$$ 证明: $\dps{\zeta(s)=s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x}$, 其中 $\sez{x}$ 为 $x$ 的整数部分.
655 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.8
设正项级数 $\dps{\vsm{n}a_n}$ 收敛. 证明: 级数 $$\bex \vsm{n}\frac{a_n}{\sqrt{r_{n-1}}+\sqrt{r_n}} \eex$$ 仍收敛, 其中 $$\bex r_n=\sum_{k=n+1}^\infty a_k.
776 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.7
设 $a_n=n^{n^{\alpha}}-1$, 讨论级数 $\dps{\vsm{n}a_n}$ 的敛散性.   解答: 当 $\al
852 0