[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.13

简介: 证明: 如果在 $(-\infty,+\infty)$ 上的连续函数 $f(x)$ 满足 $$\bex \int_x^{x+1}f(x)\rd t=0, \eex$$ 那么 $f(x)$ 是周期函数.   证明: 对 $x$ 求导有 $$\bex f(x+1)-f(x)=0, \eex$$ 而 $f$ 为 $1$ 周期函数.

证明: 如果在 $(-\infty,+\infty)$ 上的连续函数 $f(x)$ 满足 $$\bex \int_x^{x+1}f(x)\rd t=0, \eex$$ 那么 $f(x)$ 是周期函数.

 

证明: 对 $x$ 求导有 $$\bex f(x+1)-f(x)=0, \eex$$ 而 $f$ 为 $1$ 周期函数.

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.16
按牛顿二项式展开及代换 $x=\sin t$ 两种方法计算积分 $\dps{\int_0^1 (1-x^2)^n\rd x}$ ($n$ 为正整数). 并由此说明: $$\bex \sum_{k=0}^n C_n^k(-1)^k \frac{1}{2k+1}=\frac{(2n)!!}{(2n+1)!!}.
821 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.26
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    设 $f(x)$ 是 $[-\pi,\pi]$ 上的凸函数, $f'(x)$ 有界.
954 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.15
$[a,b]$ 上的连续函数列 $\varphi_1,\varphi_2,\cdots,\varphi_n,\cdots$ 满足 $\dps{\int_a^b \varphi_n^2(x)\rd x=1}$.
750 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.6
$f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}.
793 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.18
设 $f(x)$ 是在 $(-\infty,+\infty)$ 内的可微函数, 且满足:   (1). $f(x)>0$;   (2). $|f'(x)|\leq m|f(x)|$, 其中 $0
755 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.17
设 $a_n>0$ ($n=1,2,\cdots$) 且 $\dps{\vsm{n}a_n}$ 收敛, $\dps{r_n=\sum_{k=n}^\infty a_k}$. 试证:   (1). $\dps{\vsm{n}\frac{a_n}{r_n}}$ 发散.
1616 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.20
设 $a_n>0$, $\dps{\vsm{n}a_n}$ 收敛, $na_n$ 单调, 证明: $$\bex \vlm{n}na_n\ln n=0. \eex$$   证明: 又题意, $na_n\searrow 0$.
862 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.2
设 $\sed{a_n}$ 为等差数列, $a_{n+1}-a_n=d>0\ (n=1,2,\cdots)$, $m$ 为一正整数. 计算 $$\bex S=\vsm{n}\frac{1}{a_n\cdot a_{n+1}\cdots a_{n+m}}.
916 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.6
证明下列级数收敛:   (1). $\dps{\vsm{n}\sez{\frac{1}{n}-\ln\sex{1+\frac{1}{n}}}}$;   (2). $\dps{\vsm{n}\sez{e-\sex{1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}}}}$.
809 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.13
证明级数 $$\bex 1+\frac{1}{2}-\frac{1}{3} +\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots \eex$$ 发散.   证明: 由 $$\beex \bea |S_{6n}-S_{3n}|&=\sev{\sum_{k=n+1}...
698 0