[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.6

简介: $f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}.

$f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}. \eex$$

 

证明: 由换元法及积分第二中值定理, $$\beex \bea \int_a^b \cos f(x)\rd x &=\int_{f(a)}^{f(b)} \frac{\cos y\rd y}{f'(f^{-1}(y))}\\ &=\frac{1}{f'(a)}\int_{f(a)}^\xi\cos y\rd y +\frac{1}{f'(b)}\int_\xi^{f(b)}\cos y\rd y\\ &=\frac{\sin\xi -\sin f(a)}{f'(a)} +\frac{\sin f(b)-\sin \xi}{f'(b)}\\ &\equiv I_1+I_2. \eea \eeex$$ 若 $I_1\cdot I_2\geq 0$, 则 $$\bex \sev{\int_a^b \cos f(x)\rd x} \leq \frac{\sev{\sin f(a)-\sin f(b)}}{f'(b)} \leq\frac{2}{m}; \eex$$ 若 $I_1\cdot I_2<0$, 则 $$\bex \sev{\int_a^b \cos f(x)\rd x} \leq \max\sed{\frac{\sev{\sin \xi-\sin f(a)}}{f'(a)},\frac{\sev{\sin f(b)-\sin \xi}}{f'(b)}} \leq\frac{2}{m}. \eex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.19
求 $\dps{\lim_{x\to +\infty} \int_x^{x+2} t\sex{\sin \frac{3}{t}}f(t)\rd t}$, 其中 $f(x)$ 可微, 且已知 $\dps{\lim_{t\to+\infty}f(t)=1}$.
894 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.13
证明: 如果在 $(-\infty,+\infty)$ 上的连续函数 $f(x)$ 满足 $$\bex \int_x^{x+1}f(x)\rd t=0, \eex$$ 那么 $f(x)$ 是周期函数.   证明: 对 $x$ 求导有 $$\bex f(x+1)-f(x)=0, \eex$$ 而 $f$ 为 $1$ 周期函数.
714 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.23
设函数 $f(x)$ 在 $[a,b]$ 上连续, $f(x)>0$. 又 $\dps{F(x)=\int_a^x f(t)\rd t+\int_b^x \frac{1}{f(t)}\rd t}$. 试证:   (1).
687 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.24
设 $\dps{f(x)=\int_x^{x+1}\sin t^2\rd t}$, 求证: $x>0$ 时, $\dps{|f(x)|
553 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.21
设 $f(x)$ 的一阶导数在 $[0,1]$ 上连续, 且 $f(0)=f(1)=0$, 求证: $\dps{\sev{\int_0^1 f(x)\rd x}\leq \frac{1}{4}\max_{0\leq x\leq 1}|f'(x)|}$.
706 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.5
若 $f'(x)$ 在 $[0,2\pi]$ 上拦蓄, 且 $f'(x)\geq 0$, 则对任意正整数 $n$, 有 $$\bex \sev{\int_0^{2\pi}f(x)\sin nx\rd x}\leq \frac{2[f(2\pi)-f(0)]}{n}.
582 0
|
前端开发 rax
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.2
证明: $\dps{0\leq x\leq \frac{\pi}{2}}$ 时, $\dps{\sin x\leq x-\frac{1}{3\pi}x^3}$.   证明: 由例 4.3.19, $$\bex \sin x
652 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.3
求证: $\dps{f(x)=\int_0^x (t-t^2)\sin^{2n}t\rd t}$ ($n$ 为正整数) 在 $x\geq 0$ 上的最大值不超过 $\dps{\frac{1}{(2n+2)(2n+3)}}$.
682 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.17
设 $a_n>0$ ($n=1,2,\cdots$) 且 $\dps{\vsm{n}a_n}$ 收敛, $\dps{r_n=\sum_{k=n}^\infty a_k}$. 试证:   (1). $\dps{\vsm{n}\frac{a_n}{r_n}}$ 发散.
1616 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.25
对函数 $$\bex \zeta(s)=\vsm{n}\frac{1}{n^s}\quad\sex{s>1}, \eex$$ 证明: $\dps{\zeta(s)=s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x}$, 其中 $\sez{x}$ 为 $x$ 的整数部分.
652 0