经济学人万字总结17年AI领域并购趋势:谷歌领跑,人才竞争白热化

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

无论是在好莱坞电影或是新闻,2017年都充斥着无数人工智能(AI)与人类思维博弈的热议。而摆在眼前的竞争并不只是在人与电脑间,而更多存在于不断疯狂烧钱、投资并寄期望于成为全球AI领导者的科技大佬之间。

世界上最大的科技公司,无论国内或者国外,比如Alphabet(谷歌的母公司)、Amazon、Apple、Facebook、IBM和微软纷纷投入了巨资来发展AI。下图显示了截至2017年12月,全球AI领域合并与收购额高达213亿美元,比2015年多出26次交易。(数据由PitchBook提供)

dc2bd24003f00f88b9c605eb80abdfbb88906b57

全球人工智能领域合并与收购交易

研究人工智能的分支——“机器学习”是这些被收购公司的共同点。

计算机在数据中筛选,进行模式识别,并做出预测。这项技术被应用在科技产业的所有应用规则中,如在线广告精准投递、产品推荐、增强现实以及无人驾驶等领域。Uber的AI研究带头人Zoubin Ghahramani认为AI将给人类带来的转型如同计算机当初带来的那般深刻。

我们可以从数据库(database)的发展来窥见AI的潜在影响。从1980年代起,数据库拥有不断压缩信息存储的成本、洞悉市场并掌控如库存管理等基于数据分析后的事务。“数据库代表了第一代软件系统;而AI无疑将会成为下一个”,风投公司Andreessen Horowitz的Frank Chen说。谷歌的Gmail邮件系统(译者注:smart reply功能)通过扫描e-mail的内容判断这封邮件的意义,用户可在移动设备上一键式快速回复,这就是“未来已来”的例子。

伴随着个人电脑与智能手机兴起的上一波科技浪潮,AI极有潜力令科技大佬们重新调整当前的业务,并创造出全新的事业。在这种情况下,危机意识在所难免,“如果一家科技型公司不以AI作为核心竞争力,那就意味着你将事业办在了门外”,杰夫•贝索斯(Jeff Bezos)的副手,Amazon全球消费者部门(worldwide consumer)首席执行官Jeff Wilke说道。

充斥着万众期待、大肆宣传与激烈竞争的AI领域,如同当年加州淘金热潮般蓬勃爆发。

虽然百度、阿里巴巴等国内企业纷纷投资并在本土市场部署应用AI,但大多数显著有成效的公司仍集中在西方。Alphabet被广泛认为处于领先位置,其拥有许多最著名的研究人员,多年来从AI获取了巨大收益。但这场竞争才刚刚开始,在接下来的几年中,科技巨头们将在三条道路上展开激烈的交锋:为训练企业的“大脑”而争夺人才;在现有业务中使用机器学习,使之比对手更富效能;在AI的帮助下创造新的利润中心。

“招聘会热闹的就像黑色星期五的沃尔玛超市。”

最疯狂的竞争是获取人才,因为懂得AI技术的研究者比懂得数据或运算能力的人才要稀有的多。对于AI人才,尤其是能够运用机器学习技术与开创性的方式处理大数据的的人才,企业需求像气球般膨胀,远比学习此类技术的学生多。

微软公司的Gurdeep Singh Pall说,“如今AI系统就像雨人/白痴天才一样,它们在擅长的领域表现出色,但如果你没有正确的使用它们,那就是个灾难”。招募到合适的人对于一家公司能否生存至关重要(一些初创公司正是由于缺乏合适的AI技能而失败),以至于从高校中争夺教授甚至未毕业的研究生成为了一种潮流。

“招聘会热闹的就像黑色星期五的沃尔玛超市。”

卡内基•梅隆大学(Carnegie Mellon University’s) 计算机科学学院的院长Andrew Moore说,他们是研究AI的先驱机构之一,其机器人部门于2015年被Uber高调抢到。而像今年在加州长滩举办的神经信息处理系统(NIPS)这种学术会议,也因可以挖到人才而备受瞩目。最好的人选则是学术界的名人:Facebook的Yann LeCun和谷歌的Geoffrey Hinton,这两位都是教授出身且仍与大学保持从属关系,以便招收到其他学生。如果巨额工资的吸引力还不够,企业拥有的私有化数据也会帮助招揽人才。

如果吸引人才的方式都不奏效,大公司们干脆粗暴的买下整个初创公司。

科技业第一次关注的交易是2014年谷歌以5亿美元重金购入DeepMind,这家初创公司既没有收入也没有可投向市场的产品,但却拥有一个深度学习研究人员的团队,在完成收购后,他们设计了一款程序,即打败围棋世界冠军的AlphaGo。其他的公司也纷纷出手,甚至买下一些亏损的初创公司,交易不会以通常的未来收益或销售额来评估,而是按照每个员工500-1000万美元来提供报价。

科技巨头们内部的AI应用

这些公司对于如何对待员工有着不同的理念。

诸如微软和IBM的公司花重金投入AI研究,并刊发出大量的论文(见图2),但并不要求研发人员去开发赚线的业务。另一方面如Apple和Amazon等并没有太多AI研究主动权的公司则期望所有的AI应用都投入到产品中,并对他们的工作守口如瓶。谷歌和Facebook则介于关注是否让研究人员致力于赚钱的项目中

a3e6819518d8925d2841a10861cfa72163d12d56

2000-2016年人工智能相关研究论文数(五大AI会议),数据来源:多伦多大学Ajay Agrawal和Amir Sariri

激烈的人才竞争也会导致原本保密型企业变得更加公开化。

“如果你告诉他们‘过来一起干吧,但不要告诉别人你在做什么’,那些人是不会来的,因为你会毁了他们的职业生涯”,Facebook的AI研究中心负责人LeCun解释道。保密与吸引人才之间的权衡也同样困扰着国内的科技企业,他们正试着在海外开设分支机构并招募美国研究人员。百度分别于2013以及2017年在硅谷开设了两家AI研究实验室。西方的AI人才虽然给予他们高度的评价,但仍更愿意去往相对透明的美国公司。

如果这些公司能够吸引到合适的AI人才,其效果就是呈指数级的扩展他们的劳动力。

Andreessen Horowitz公司的Benedict Evans说,“拥有AI,就如同拥有100万名实习生提供生产力”。这种计算能力被整合到企业现有的业务当中。AI最显著的优势是预测客户需求。举个例子,四分之三在Netflix观看视频客户和超过三分之一在Amazon上购物的客户都会对网站自动推荐的内容做出反应。拥有Instagram的Facebook利用机器学习识别帖子、照片和视频的内容,并向用户展示相关内容,这种技术也同样应用在对垃圾帖子的过滤上。从前他们按照时间顺序来排列帖子,但通过这种按相关性推送帖子和广告的方式使得用户的互动性更强。

Facebook的应用AI团队负责人Joaquin Candela说,如果没有机器学习,Facebook可能永远无法达到今天的规模。那些在搜索领域没有采用AI或较晚使用AI的公司,如Yahoo及其搜索引擎,还有微软的Bing,相对来说就比较挣扎了。

在AI的应用方面,Amazon和谷歌是走得最远的。机器学习令Amazon的线上与实体运营更富有效率,大约8万机器人在它的运营中心里保持着永不停歇的工作,利用AI为库存货物分类,并安排货车装载。对于食品杂货的订单,Amazon已经利用计算机视觉识别出成熟且新鲜的草莓和别的水果,再通过无人机送到客户手上并完成当日送达。

谷歌使用AI为YouTube上的内容分类,清除掉令人讨厌的资源,鉴定用户并在Google Photos上将他们分组归类。AI也被植入到Android操作系统中,使其运行得更流畅,预测用户感兴趣的app。被视为AI领域的最佳研究组织之一的Google Brain通过改进搜索算法来提高机器学习的能力。而来自英国的DeepMind团队虽然未给Alphabet产生实质效益,但他们帮助后者提高全球数据中心的能源使用效率,节省了大笔经费。他们的围棋项目则是一步公共关系的“妙棋”。

人工智能同样也被应用于企业中。IBM的人工智能平台Watson的总裁,David Kenny预言未来将有两种“人工智能公司”:为客户提供包含人工智能技术的服务盈利的公司和为企业提供人工智能服务的公司。事实上,因为都是基于云计算扎实的臂膀,这两种形式的本质上相同。提供者们竞相通过人工智能研究不同的产品以锁定客户群。亚马逊云计算(AWS)、微软Azure和谷歌云端平台是现在三家最大的通过应用程序接口(API)提供机器学习能力的公司。以微软的云服务Azure为例,它帮助了优步(Uber)建立验证司机照片的工具去确认每位司机的身份。谷歌云提供了一个“工作 API”来帮助公司匹配最合适的他们招聘职位的应征者。

人工智能的大脑

许多在其他行业的公司,从零售业到传媒,都在从宣扬人工智能“民主化”的云服务中受益。为没有一定技术或规模来独立建造复杂人工智能的公司提供相关服务在2500亿美金的云计算市场中是件十分赚钱的事。但这十分耗时,因为提供商必须常常按照客户复杂的需求变更相应的人工智能的服务。微软在销售软件和为客户提供后续的支持性服务方面有丰富的经验,因此在人工智能服务的领域也很有可能做的出色。但谷歌云负责人Diane Greene回应说,人工智能服务将在未来越来越多采用自助式,一切只是时间的问题。

IBM 作为人工智能界的竞争者,为他们Waston平台的推广进行了强大的营销活动。即便拥有咨询业务和以超过兆兆字节(tb)的大数据为基础的极速运算的名声,IBM却依然常常被人工智能的研究人员忽略。批评者也指出虽然IBM已经在Watson投入超出1500万美金并在2010到2015年五年内的时间里花费超出500万美金用来收购公司,但这其中主要目的是获取专有数据,因为公司本身还没有自己的数据。IBM 的弱势也许已经无法弥补。大部分公司老总已经为人工智能科技感到压力重重,所以一旦有机会迅速获取一个现有科技成品,他们总是乐意斥巨资购买的。

迄今为止科技巨头们都在尝试运用人工智能技术从现有的运营中获取利润。在接下来的几年里他们希望人工智能能够帮助他们拓展新的业务。这其中一个竞争激烈的领域就是虚拟助理。智能手机已经能够非常了解他们的使用者,但是不论是通过手机还是智能语音的方式, 人工智能支撑下的虚拟助手都致力于将这种关系更深入化。在2010年,苹果推出了语音助手siri,他们也成为了第一个为兑现此承诺并进行深耕的公司。从这以后,亚马逊,谷歌和微软都在此方向斥巨资进行研究,结果证明,他们研发的助理的语音识别能力也更加出色。三星、Facebook和百度也加入竞争中去研发虚拟助手的服务。

一个算法的成功便能主导整个市场

单机扬声器是否会成为一个巨大的市场我们还未能知晓,但人与互联网的互动形式一定不会仅限于文字。 “所有的公司都明白,一旦掌握服务中的核心技术就能够主导整个市场。” Pedro Domingos,《算法大师》(The Master Algorithm,一本关于人工智能的书)的作者说道。

展望未来,增强现实(AR)设备是人工智能科技下的另一个商机。像Snap(聊天软件)这样的手机app,和Pokémon Go游戏都是早期AR的例子。 但是AR可以彻底地改变人与互联网之间的关系:人们并不是通过一个小小的显示屏获取数据信息,而是通过一种外界的、无处不在的体验获取、消费互联网讯息。AR技术将提供像同声传译和人脸识别等人工智能应用的便携式设备。

在AR研究的征途中,科技巨头们都停滞于还在探索阶段未有大的进展。谷歌和苹果都启动了AR 软件开发的装备,希望研发者在他们的平台上开发运用AR技术的app。于此同时,AR技术的计算机硬件的开发也竞争激烈。谷歌早先推出了一个AR眼镜的样本,但最终以失败告终。微软研发了一款名为HoloLens的头戴式显示器, 但其价格高达3000到5000美金,因此始终只能是款小众产品。其他公司,包括脸书(fb)和苹果,也应当在开发他们自己的AR产品。在AR研究中一马当先必将在这些新科技领域占据主导。

无人驾驶车的研发领域也是同样的状况。 科技公司正在不断收集路况数据去建立庞大的私有数据库,并使用计算机视觉来训练他们的系统在现实世界中识别障碍物。一旦在这场竞争中获胜将收获颇丰。个人交通是一个巨大的市场,在全世界价值约10万亿。一旦打开无人车市场,这些技术和知识便可应用于其他基于人工智能的项目,比如遥控飞机和机器人。人们也许会因为某项功能的便捷好用而选择某个搜索引擎,但无人车与搜索引擎不同,用户会更偏好安全记录最好的无人车,也就是那些应用人工智能技术去模拟现实世界最精准的公司,所以只有无人车事故最少的公司会最终受益。

每个公司都在尝试不同的方式去解决这个问题。百度,中国的科技巨头,正在研发一种类似谷歌在移动设备中的安卓系统的无人车系统(虽然如何用这个系统去赚钱还未知)。Alphabet旗下的无人车公司、优步和特斯拉,一群创业时鲜为人知但迅速在业内立足的汽车制造商,也一直在无人车领域努力研发(苹果据传已经逐渐减少其无人车技术的研发)。

无人车仅仅只是科技公司的人工智能战略如何超越软件的虚拟世界到硬件的一个例子。 许多公司,包括Alphabet、苹果和微软,也在投资研发专业、强大的人工智能芯片为他们众多的活动提供支持。他们将加入与英伟达(Nvidia)的竞赛, 一个垄断了在像无人车和VR等人工智能领域所使用的智能芯片的科技公司。

Alphabet和苹果有多大的可能性把这些芯片买给其竞争者或是为自己所用还是未知。但如果只有少数几个公司研发出了这样的技术,那么租赁或销售这些芯片给同行业竞争者就会丧失在残酷的计算力竞争中巨大的优势。因此他们更有可能运用创新科技去改进自有的服务,而不是转手他人。

这也带来了一个更宽泛的问题:当今科技巨头是否会在人工智能领域垄断市场。当前的科技巨头, 就算不提在投资上的领先,在数据、计算能力、智能算法和人才上也都有极大优势, 因此极有可能占领大部分来自人工智能的收益。历史指向了垄断的可能性:在一段时期内,极少数的科技公司对数据库和个人电脑的市场占据垄断性地位(Oracle 和IBM 在数据库市场,微软和苹果在个人电脑的市场)。

如果以人才、计算能力和数据为衡量标准,那么谷歌就是在人工智能界的领头者。谷歌汇集了最聪明的一群人,和多种多样的研究项目,从遥控飞机、汽车到智能软件,因此对机器学习感兴趣的人很少会离开谷歌。在其他公司都谨慎对待人工智能研发时,谷歌的创始者们,一群热爱机器学习的人,看到了这一领域未来将带来的竞争优势。

人工智能的精神之家

很多科技行业的精英,如伊隆•马斯克(Elon Musk),特斯拉和火箭研发公司SpaceX的创办人,都曾担心Alphabet和其他公司会垄断人工智能的人才和专业知识。他和其他几个硅谷的杰出老板一起建立了一个非盈利性非企业联盟的研究机构OpenAI,专注于人工智能技术研发。他们担心一个公司最终打破 “一般智力” — 计算机不再需要人工编程去完成任务,会带来怎样的后果。这种景象也许几百年后才会发生,但谷歌从未忽视这种可能性。“我们非常希望突破当前人工智能的平台期”,Jeff Dean,谷歌大脑(Google Brain)的创办者这样说。如果一个公司掌控了这样的技术,他就能够完全改变当前的竞争格局。

与此同时,这也很大程度上取决于科技公司是否开放,是否能协同合作。除了发表学术论文,许多公司现在也将他们自己机器学习软件库变为开源软件库,从而为同行业竞争者和独立开发者提供内部工具。 谷歌的开源软件库,TensorFlow,是最为流行的一个。脸书将他们的两个软件库,Caffe2和Pytorch的源代码开放。开源软件库在技术上有很大优势。当它们被使用时,软件库也被不断纠错,拥有这些软件库的公司就从中受益,信誉更好。“千万小心那些天资过人的极客们”, 艾伦人工智能研究所(另一个非盈利研究机构)的Oren Etzioni开玩笑地说道。

业内一位专家担心TensorFlow等软件库虽然会吸引更多出色的研究者,但这些软件库可能在未来开始收费或被用于其他地方以获取盈利。这样的顾虑是颇有远见的,但在一个行业淘金热盛行的时期很少有人考虑远期利益。这股淘金热在现在的硅谷里,大部分技术人员都消耗了太多时间和精力去担忧人工智能的未来和潜在收益。


原文发布时间为:2017-12-18

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
79 6
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
135 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
1月前
|
人工智能 编解码 网络架构
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
171 14
GenCast:谷歌DeepMind推出的AI气象预测模型
|
24天前
|
人工智能 自然语言处理 API
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
谷歌推出的Multimodal Live API是一个支持多模态交互、低延迟实时互动的AI接口,能够处理文本、音频和视频输入,提供自然流畅的对话体验,适用于多种应用场景。
71 3
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
|
2月前
|
机器学习/深度学习 数据中心 芯片
【AI系统】谷歌 TPU 历史发展
本文详细介绍了谷歌TPU的发展历程及其在AI领域的应用。TPU是谷歌为加速机器学习任务设计的专用集成电路,自2016年首次推出以来,经历了多次迭代升级,包括TPU v1、v2、v3、v4及Edge TPU等版本。文章分析了各代TPU的技术革新,如低精度计算、脉动阵列、专用硬件设计等,并探讨了TPU在数据中心和边缘计算中的实际应用效果,以及谷歌如何通过TPU推动移动计算体验的进步。
86 1
【AI系统】谷歌 TPU 历史发展
|
1月前
|
人工智能 自然语言处理 安全
谷歌版贾维斯即将问世,最强Gemini 2.0加持!AI自主操控电脑时代来临
谷歌发布的Gemini 2.0标志着AI新时代的到来,被誉为“谷歌版贾维斯”。该系统在自然语言处理、图像识别及自主操控电脑等方面取得重大进展,尤其在多模态数据处理上表现出色,能更准确理解用户需求并执行复杂任务。尽管存在对AI自主操控可能带来的负面影响的担忧,谷歌强调Gemini 2.0旨在辅助而非替代人类工作,且已采取多项措施保障其安全性和可靠性。
29 5
|
12天前
|
人工智能
阿里云领跑生成式AI工程领域,两大维度排名Gartner®生成式AI工程Market Quadrant全球第二
阿里云凭借强劲实力入选Gartner 《Innovation Guide for Generative AI Technologies》所有领域的新兴领导者象限。
|
2月前
|
机器学习/深度学习 人工智能 芯片
【AI系统】谷歌 TPU v3 POD 形态
TPU v3 是 TPU v2 的增强版,主要改进包括:MXU 数量翻倍至 4 个,时钟频率提升 30%,内存带宽扩大 30%,容量翻倍,芯片间带宽增加 30%,可连接节点数增至 4 倍。TPU v3 通过采用水冷系统,不仅提高了功率,还优化了温度管理,显著提升了计算能力和能效。TPU v3 Pod 由 1024 个 TPU v3 组成,算力达 100 PFLOPS,适用于大规模神经网络训练。
39 2
|
2月前
|
机器学习/深度学习 缓存 芯片
【AI系统】谷歌 TPU v1-脉动阵列
本文详细分析了谷歌TPU v1的架构与设计,重点介绍了其核心组件如DDR3 DRAM、矩阵乘法单元(MXU)、累加器及控制指令单元,特别是MXU中脉动阵列的工作机制。通过对比TPU v1与CPU、GPU在服务器环境中的表现,展示了TPU v1在提升神经网络计算吞吐量方面的显著优势,尤其是在低延迟和高能效方面。
58 3
|
2月前
|
机器学习/深度学习 人工智能 芯片
【AI系统】谷歌 TPU v4 与光路交换
TPU v4 是谷歌在 TPU v3 发布四年后推出的最新一代 AI 加速器,采用了 7nm 工艺,MXU 数量翻倍,内存容量和带宽显著提升。TPU v4 引入了 Sparse Core 以优化稀疏计算,首次采用了 3D Torus 互联方式,通过 Palomar 光路开关芯片减少系统延迟和功耗。TPU v4 Pod 实现了 1.126 Exaflops 的 BF16 峰值算力,展现了谷歌在大规模并行计算领域的突破。然而,TPU v4 也面临着系统成熟度低、拓扑僵硬和负载均衡问题等挑战。
80 0