我觉得主要抓住三点,一是划分成多少类,这个类别数k的指定;二是聚类过程中中心点的选择,开始时怎么选,迭代过程中又该怎么选;三是聚类终止的条件。现在比较流行的就是k均值,k中心点了,当然还有他们的一些变种。首先是这个k的指定问题,现在还没有好的方法。
奥姆卡剃刀原理:当两个假说具有完全相同的解释力和预测力时,我们以那个较为简单的假说作为讨论依据。
我觉得主要抓住三点,一是划分成多少类,这个类别数k的指定;二是聚类过程中中心点的选择,开始时怎么选,迭代过程中又该怎么选;三是聚类终止的条件。现在比较流行的就是k均值,k中心点了,当然还有他们的一些变种。首先是这个k的指定问题,现在还没有好的方法。
奥姆卡剃刀原理:当两个假说具有完全相同的解释力和预测力时,我们以那个较为简单的假说作为讨论依据。