标签
PostgreSQL , Greenplum , 点查 , 按PK查询
背景
点查,基于PK的查询或者OLTP类查询,实际上并不是GPDB 擅长的,GPDB擅长的是海量的OLAP。
不过在企业、政府等窗口服务类业务,并发实际上并不高,如果GPDB的点查性能达到一定的性能时,实际上也能满足这类场景的需求。
测试
下面是一组测试,造10亿条测试数据,按PK查询。
create table t_pk(id int primary key, info text, crt_time timestamp);
postgres=# insert into t_pk select id, md5(random()::text), clock_timestamp() from generate_series(1,1000000000) t(id);
INSERT 0 1000000000
使用pgbench压测,GPDB点查性能如下,达到了接近1万TPS,实际上已经满足大多数的企业、政府等窗口服务类业务的查询需求。
transaction type: ./test.sql
scaling factor: 1
query mode: simple
number of clients: 64
number of threads: 64
duration: 120 s
number of transactions actually processed: 1076112
latency average = 7.136 ms
latency stddev = 16.734 ms
tps = 8931.155844 (including connections establishing)
tps = 8933.619173 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set id random(1,1000000000)
7.135 select * from t_pk where id=:id;
同一台物理机,PostgreSQL的点查性能如下,超过了100万tps。
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 64
number of threads: 64
duration: 120 s
number of transactions actually processed: 126137940
latency average = 0.061 ms
latency stddev = 0.032 ms
tps = 1051029.358638 (including connections establishing)
tps = 1051103.770277 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.001 \set id random(1,1000000000)
0.060 select * from t_pk where id=:id;
当然,这里并不是要PK的意思,只是说GPDB还有很大的提升空间。
GPDB 5.x的版本,据说点查性能已经提升到5万+的tps了。
满足窗口类查询场景完全没有问题,GPDB可以作为一个OLTP+OLAP(偏OLAP)的数据库来使用,满足企业、政府等窗口服务类业务,海量数据的分析与实时查询的需求。
PG和GPDB如何选择?
《PostgreSQL 规格评估 - 微观、宏观、精准 多视角估算数据库性能(选型、做预算不求人)》
《空间|时间|对象 圈人 + 透视 - 暨PostgreSQL 10与Greenplum的对比和选择》
GPDB的写入性能与选择
《Greenplum insert的性能(单步\批量\copy) - 暨推荐使用gpfdist、阿里云oss外部表并行导入》